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Abstract: This paper discusses the construction of inverse solutions with optimal resolution kernels and
applications of them in the reconstruction of the generators of the EEG/MEG. On the basis of the
framework proposed by Backus and Gilbert [1967], we show how a family of well-known solutions
ranging from the minimum norm method to the generalized Wiener estimator can be derived. It is shown
that these solutions have optimal properties in some well-defined sense since they are obtained by
optimizing either the resolution kernels and/or the variances of the estimates. New proposals for the optimization
of resolution are made. In particular, a method termed ‘‘weighted resolution optimization’’ (WROP) is introduced
that deals with the difficulties inherent to the method of Backus and Gilbert [1967], from both a conceptual and a
numerical point of view. One-dimensional simulations are presented to illustrate the concept and the interpreta-
tion of resolution kernels. Three-dimensional simulations shed light on the resolution properties of some linear
inverse solutions when applied to the biomagnetic inverse problem. The simulations suggest that a reliable
three-dimensional electromagnetic tomography based on linear inverse solutions cannot be constructed,
unless significant a priori information is included. The relationship between the resolution kernels and a
definition of spatial resolution is emphasized. Special consideration is given to the use of resolution kernels
to assess the properties of linear inverse solutions as well as for the design of inverse solutions with optimal
resolution kernels. Hum. Brain Mapping 5:454–467, 1997. r 1997Wiley-Liss,Inc.
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INTRODUCTION

Although many complementary noninvasive imag-
ing techniques for the study of the human brain have
been developed in the last few decades, the only

modality that provides the temporal resolution needed
to study the dynamics of brain processes is the measure-
ments of the electric or magnetic fields produced by
neuronal currents on or over the scalp surface. The
major limitation of these techniques appears when we
attempt to construct a three-dimensional tomography
of these currents, which leads to an intrinsically non-
unique inverse problem. It is well-known that neither
an infinite number of exact electric or magnetic mea-
surements alone, nor a combination of them, deter-
mine uniquely the current distribution within the
brain [Hämäläinen et al., 1993]. Additionally, the data
are in practice noisy and insufficient, which results in a

Contract grant sponsor: Swiss National Foundation; Contract grant
numbers: 4038-044081/1, 32-37819.93; Contract grant sponsor: Deut-
sche Forschungsgemeinschaft.
*Correspondence to: Rolando Grave de Peralta Menendez, Func-
tional Brain Mapping Laboratory, University Hospital Geneva, 24,
Rue Micheli du Crest, 1211 Geneva 4, Switzerland. E-mail:
grave@diogenes.hcuge.ch
Received for publication 9 June 1997; accepted 21 July 1997

r Human Brain Mapping 5:454–467(1997)r

r 1997Wiley-Liss,Inc.



reduction of the reliability of the solution: the former
introduces statistical uncertainties in the model, while
the latter smoothes out the spatial details. Even so, the
analysis of reliability is relevant for any inversion
method; it is relatively easy to define measures to
quantify the properties of linear inversion methods
concerning resolution and stability, and to design
estimators based on the optimization of these mea-
sures. While the methods to deal with the instability
are well-developed [Bertero et al., 1988], resolution
seems to deserve further attention.

Even if different interpretations of resolution exist,
we will refer to resolution as the capability to resolve
(detect) details on a certain length scale. It is intuitively
clear that the measurements reflect some properties of
the brain sources, but the important question is:
‘‘Which features of brain activity can be identified
from the data without further knowledge about the
sources?’’ Though there is no definite answer, we can
be sure that there is a resolution limit that can not be
surpassed by any method. While the measurements
might allow us to determine changes at the scale of the
whole brain or of one hemisphere, changes at neuronal
scales will certainly not be detected. In general, for any
point in the source space, the resolution is different,
depending on the noise, the sensor configuration, and
the electromagnetic properties of the medium (lead
fields), e.g., silent sources cannot be retrieved at all,
whereas (nonsilent) sources near to the sensors are
expected to be better resolved.

Linear and nonlinear inversion methods have been
in use for some time now to yield a three-dimensional
estimation of the current distribution within the hu-
man brain [Clarke et al., 1989; Ioannides et al., 1989;
Pascual-Marqui et al., 1995]. Different methods have
been explored [reviewed in Hämäläinen et al., 1993;
George et al., 1995], but until recently, these methods
were introduced mainly to construct sources with
some predefined global properties (minimum norm,
smoothness). The fact that linear inversion methods
yield estimates of the source activity that can be
interpreted as weighted averages has rarely been
reflected in the literature [Robinson and Rose, 1992;
Dale and Sereno, 1993]. Recently, we have used this
interpretation for several purposes: 1) Analysis of capabili-
ties and limitations of linear inverse solutions or compari-
sons among them [Grave de Peralta Menendez et al., 1996;
Hauk et al., 1996; Lütkenhöner and Grave de Peralta
Menendez, 1997] and 2) Proposal of new inverse solutions
based on the estimation of averages [Grave de Peralta
Menendez and Gonzalez Andino, 1997].

For the case of linear inversion methods, the achiev-
able resolution can be analyzed by means of the

resolution or averaging kernels [Backus and Gilbert,
1967, 1968, 1970; Grave de Peralta Menendez et al.,
1996; Grave de Peralta Menendez and Gonzalez An-
dino, 1997], which, associated with every linear estima-
tor, describe how all possible active sources influence
the estimate. If an estimate of the source activity at a
certain location is desired, the influence of sources
distant from this location should be small compared to
closer ones. In this case the resolution kernels peak
around the target point and the width of this peak is
directly related to the resolution at this point. One goal
of this paper is to show how the quality of a resolution
kernel and the stability of the estimates can be quanti-
fied in order to derive optimal inverse solutions. Since
there is no unique way to measure the goodness of a
resolution kernel in terms of its closeness to the ideal
one, different measures of the optimality of the resolu-
tion kernel will lead to different solutions.

In the first section of the paper, the basic theory of
the bioelectromagnetic inverse problem is briefly exam-
ined. Also, the concept of the model resolution matrix
and a description of the general methodology that can
be used to obtain solutions with optimal resolution
kernels is introduced. With these elements, some linear
inverse solutions are cast in this framework and two
new solutions, the weighted resolution optimization
(WROP) method and a generalization of the method of
Capon [1969], are proposed. The case of noise is
considered, and it is shown how inclusion of the
variance of the solution in the optimization of linear
inversion methods leads to a trade-off between stabil-
ity and resolution. Computer simulations are used to
facilitate the comprehension of some concepts pre-
sented in the theoretical section, and to illustrate the
difficulties inherent to the bioelectromagnetic inverse
problem in an approximate model of the head. The
analysis of solutions is based on their resolution
kernels, which are independent of the data. Thus, the
conclusions derived in this section will not change by
considering the noise. The last section is devoted to the
discussion of the results, considering their possible
applications, alternatives, and future trends.

In this paper, vectors will be represented by lower-
case bold letters, and matrices by uppercase. All
vectors are column vectors; Wij represents the element
in row i and column j of W. Wi. and W.j stand for the
column vectors determined by the i-th row and the j-th
column of W, respectively, and diag(W) stands for the
diagonal matrix with the same elements as in the main
diagonal of W. If x is a vector, then x̃ represents the
diagonal matrix with elements according to x.
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PROBLEM STATEMENT

The relationship between electric potentials or mag-
netic fields measured at/near the scalp surface and
their sources can be expressed in terms of a linear
integral equation [Sarvas, 1987]:

d 5 e L(rW)jW(rW)drW 1 n (1)

where d is the m-dimensional vector of measured data
points and jW(rW) is the source current density. The
number of components nc of jW(rW) depends upon the
constraints imposed on the currents in the selected
source space. In the most general case nc is equal to 3
but if, for example, the source space is selected as a
two-dimensional surface approximating the cortical
sheet and the currents are constrained to be normal to
this surface, then nc is equal to 1. The m by nc lead field
matrix L(rW) reflects the sensitivity of every sensor to the
sources, and n stands for the noise which is assumed to
be additive and with zero mean. The integral is taken
over the whole source space. In practice, the problem is
usually discretized [Greenblatt, 1993], e.g., the source
current is approximated by a large number of current
dipoles of arbitrary orientation at known locations.
This results in the linear matrix equation:

d 5 Lj 1 n (2)

where d is again the m-dimensional vector of mea-
sured data points, j represents the discretized source
current density consisting of p unknowns, and n
stands for the noise as above. Each column of the
discrete lead field matrix L contains the forward
solution for one component of a specific dipole. There-
fore, every measurement di in a specific channel i can
be interpreted as a projection of the source j on to the
i-th row of the lead field matrix plus a random noise
term ni. For simplicity, we will here consider the
discrete case. Nevertheless, the solutions discussed in
this paper are not restricted to the points used in the
discretization. This aspect will be further explained in
the discussion.

In the discrete inverse problem we attempt to find j
from the knowledge of the data d and the lead field
matrix L. Since in realistic situations m 9 p, this is a
highly underdetermined inverse problem. The data
contain information only about the m-dimensional
subspace, whereas the source space is p-dimensional
(infinite in the continuous case). This problem is
comparable to the reconstruction of a three-dimen-
sional object from its shadow, which is a two-

dimensional projection of the object. Nevertheless,
even in highly underdetermined problems, the data
reflect some properties of the sources. The cornerstone
to determine the inferences that can be drawn from the
data by means of linear inverse solutions is the concept
of the model resolution matrix.

The resolution matrix

Any linear inverse solution to Equation (2) can be
written as

ĵ 5 Gd (3)

Substitution of the data d according to Equation (2)
into Equation (3) leads to a fundamental equation for
underdetermined linear systems:

ĵ 5 Gd 5 GLj 1 Gn 5 Rj 1 e (4)

where R 5 GL is the resolution matrix [Menke, 1989;
Grave de Peralta Menendez et al., 1996] and e 5 Gn
stands for the part of the solution due to noise in the
data. If we consider, for simplicity, the case without
noise, i.e., ĵ 5 Rj, an important relationship between
the estimate ĵ and the real source j can be seen. Every
component of ĵ is a weighted average of the actual j,
with the weighting factors given by the elements of the
rows of the resolution matrix R. For this reason, the
rows of R are called averaging kernels. Unique, per-
fectly accurate estimates of the actual sources are
obtained when R 5 I (the identity matrix). However,
this does not occur in underdetermined inverse prob-
lems since the matrix R cannot have a rank greater
than m (the number of sensors). The best resolution
matrices we could hopefully obtain are matrices with
rows peaked around the point r0, for which they give
an estimate and small amplitudes elsewhere. In such
cases, the estimates can be interpreted as smoothed
versions of the actual current distribution, and the
degree of smoothing depends on the shape of the
averaging kernels. Note that in this interpretation in
terms of averages, it is implicitly assumed that simulta-
neously active sources at remote points have small
influence in the estimate of the source under analysis.
In this case where the averaging kernel has a peak
around r0, the estimate at this point will be an average
of the real source around r0. Backus and Gilbert [1967]
identified the width of the peak with the concept of
resolution, i.e., a rough measure of the finest details
(highest spatial frequencies) which can be resolved by
the data around r0. For that reason the rows of R are
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also called resolution or resolving kernels. In practice,
the resolution kernels may exhibit large sidelobes (see
Computer Simulations, below) or are incorrectly peaked
at locations distant from the target point r0. All these
aspects confuse the interpretation of the resolution
concept.

Equipped with this appealing interpretation, Backus
and Gilbert [1968] concluded that optimal resolution
kernels should have the sharpest possible peak around
the target point r0, compatible with good suppression
of contributions from distant r. In other words, they
should be close to the ideal one: the delta function for
the continuous case, or the rows of the identity matrix
in the discrete case. Backus and Gilbert [1968] defined
a numerical measure for the closeness to the delta
function, termed the spread, which, when optimized,
leads to solutions with optimal resolution kernels. The
resultant optimization problem, and a family of solu-
tions that can be derived by considering the discrete
spread of Backus and Gilbert [1968], are the topics of
the following section.

Optimization of the resolution matrix

We will consider the discrete Backus and Gilbert
spread [Menke, 1989] to measure the distance to the
ideal resolution matrix, i.e., the identity matrix I:

s(R, I) 5 o
i

o
j

Wij (Rij 2 Iij )2 (5)

where the Wij are positive otherwise arbitrary weight-
ing factors.

After some algebraic transformations and consider-
ing that R 5 GL, Equation (5) can be rewritten as:

s(GL, I) 5 o
i

(Gi.
t LW̃i.LtGi. 2 2WiiGi.

t L.i 1 Wii )

5 o
i

(Gi.
t SiGi. 2 2WiiGi.

t L.i 1 Wii ) (6)

where Si 5 LW̃i.Lt is called the spread matrix. The
summation index runs over the resolution kernels, i.e.,
the rows of the resolution matrix. Note that the i-th
term in the summation represents the distance from
the i-th resolution kernel to the ideal one and depends
only upon the i-th row of the inverse matrix G. This
property facilitates the computation of the solutions
derived in what follows, since they are determined by
optimizing the spread s(GL, I) with respect to the
elements of G, using additional constraints when
needed to ensure unique estimators.

Minimum norm method

If all the weights are equal to a positive arbitrary
value, i.e., Wij 5 a . 0, the spread is just a multiple of
the Frobenius norm. For any row we have the follow-
ing optimization problem:

min Gi.
t SiGi. 2 2aGi.

t L.i 1 a with solution (7)

Gi. 5 aSi
21L.i 5 (LLt )21L.i (8)

which corresponds to the rows of the minimum norm
(MN) inverse matrix or Moore-Penrose pseudoinverse
[Penrose, 1955], applied in the bioelectromagnetic
inverse problem by different groups [e.g., Hämäläinen
and Ilmoniemi, 1984; Wang et al., 1992].

Backus and Gilbert method

Since Robinson and Rose [1992] mentioned the
theory of Backus and Gilbert [1967], we repeatedly
suggested different applications of it to bioelectromag-
netic data. In Grave de Peralta Menendez et al. [1996]
and Grave de Peralta Menendez and Gonzalez [1997],
we introduced the model resolution matrix as the basis
for the analysis, comparison, and design of linear
inverse solutions. Other applications are described in
Hauk et al. [1996], Lütkenhöner and Grave de Peralta
Menendez [1997], and Hauk [1996]. The key idea of the
method of Backus and Gilbert [1968], to obtain smooth
and compact resolution kernels, is a selection of weights
that increasingly penalize the amplitudes of the ker-
nels at points distant from the one under analysis. For
the sake of clarity, we will consider, below, their
proposals of weights for scalar and vector fields
separately.

Scalar fields

For the case of scalar fields the weights are selected
such that Wij 5 f(dij), where f is a monotone function
such that f(0) 5 0 and dij is the distance between the
solution points associated with the unknowns i and j.
In this way, the resolution kernel for the unknown i is
compelled to have lower amplitudes at distant points
and larger amplitudes near the point under estimation.
Probably, the most widely used weighting function is
f(x) 5 x2, which leads to the so-called second moment
norm [Treitel and Lines, 1982].

Since Wii 5 f (0) 5 0, the optimization of the spread is
not enough to uniquely determine Gi.. Thus an additional
restriction is required. Backus and Gilbert [1968] con-
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strained the integral of a resolution kernel to be equal
to one (unimodularity), which reduces to the condition
Ri.

t 1W 5 Gi.
t L1W 5 1 in the discrete case, where 1W is a vector

containing only ones as elements. The resultant optimi-
zation problem is given by:

min Gi.
t SiGi.

s.t. Gi.
t u 5 1 (9)

with u 5 L1W , i.e., the k-th component of u is the sum
over the elements of the k-th row of L.

This leads to the solution:

Gi. 5
Si

21u

utSi
21u

5
(LW̃i.L)21L1W

1WtLt(LW̃i.L)21L1W
(10)

A more general formulation of the constraint is given
by selecting the vector and the constant arbitrarily for
each row, i.e., Gi.

t ui 5 ai. Then the solution generalizes
to:

Gi. 5 ai

Si
21ui

ui
tSi

21ui

5 ai

(LW̃i.L)21ui

ui
t (LW̃i.L)21ui

(11)

An interesting alternative to the unimodularity con-
straint is to impose that the diagonal element of the
row of the resolution matrix is equal to 1. With this
restriction we attempt to determine the actual strength
of a source at that location if no others are simulta-
neously active. This constraint can be expressed by
ui 5 L.i and ai 5 1, which leads to:

Gi. 5
Si

21ui

ui
tSi

21ui

5
(LW̃i.L)21Li

Li
t (LW̃i.L)21L.i

(12)

Vector fields

For a vector field of dimension N, Backus and
Gilbert [1968] suggested using weights

Wij 5 f (dij )drs 1 (1 2 drs ), where i 5 (p 2 1)N 1 r,

j 5 (q 2 1)N 1 s, 1 # r, s # N

represent the r-th and s-th components on points p and
q, respectively, and drs stands for the discrete Dirac
delta function, with value one for r 5 s and zero
otherwise.

This proposal of weights for the vector case is not in
full agreement with the original idea of the Backus and

Gilbert method to derive compact resolution kernels.
For example, consider the estimation of the r-th compo-
nent of a source at the p-th point. For any point q, the
two components that differ from the one under estima-
tion (s Þ r), have constant weights one, independently
of the Euclidean distance between p and q. The only
component that has weights according to this distance
is the r-th itself. However, according to the original
philosophy of Backus and Gilbert, the influence of any
source component at remote points should be penal-
ized. Thus, we suggest weights that depend on the
Euclidean distances for all three components, and
adding an arbitrary constant to the ‘‘other’’ compo-
nents (s Þ r) to penalize even more their influence, i.e.,

Wij 5 f (dij ) 1 (1 2 drs )a

with a . 0. We will refer to these weights as corrected
weights and the solution obtained using this weight-
ing strategy as corrected Backus and Gilbert (CB&G).
For the case of scalar fields, CB&G is the same as the
original Backus and Gilbert (B&G).

Weighted resolution optimization
(WROP) method

The unimodularity condition selected by Backus
and Gilbert [1968] to guarantee unique estimators is
only one of the possible constraints fulfilled by an ideal
resolution matrix. In fact, the particular properties of
the problem under consideration could suggest differ-
ent desirable attributes for the resolution kernels. Since
it is generally sufficient to select weights that deter-
mine the value of the diagonal element Wii to obtain
unique estimates, we propose the use of more flexible
weights. In particular, for the case of scalar fields we
propose the use of Wij 5 f (dij) 1 b, b . 0, with f as in
the Backus and Gilbert method. With this selection Wii

5 b, and Gi. can be determined solving the following
optimization problem without additional constraints:

min Gi.
t SiGi. 2 2WiiGi.

t L.i 1 Wii (13)

with solution

Gi. 5 WiiSi
21L.i 5 Wii (LW̃i.Lt )21L.i (14)

For the estimation of vector fields the weights are
selected on two bases: to eliminate the need for
additional constraints and to diminish the inconsisten-
cies of Backus and Gilbert’s original selection de-
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scribed in the previous section, i.e.,

Wij 5 [f (dij ) 1 b] 1 (1 2 drs )a

Here a is a positive constant, and the remaining
indices are as in the previous section.

In both cases, for scalar and vector fields, the spread
function for this method can be decomposed in two
terms, namely a combination of the minimum norm
spread Si

MN and the corrected Backus and Gilbert
spread Si

CB&G

s(GL, I) 5 o
i

(Gi.
t LW̃i.LtGi. 2 2bGi.

t L.i 1 b)

5 o
i

(Si
MN 1 lSi

CB&G) (15)

where the coefficient l 5 1/b represents the regulariza-
tion parameter, such that the solution tends to the
minimum norm solution when l tends to zero [Bertero
et al., 1988]. The addition of the second term will in
general improve the compactness and smoothness of
the resolution kernels obtained by the minimum norm
method (see Computer Simulations, below).

Note that Equation (14) corresponds to the rows of a
weighted minimum norm and when the parameter b
depends on the index j, the WROP method corre-
sponds to a regularization with respect to a weighted
minimum norm solution. Variations of b with both
indexes (i, j) can also be considered, illustrating the
flexibility of the WROP method.

Generalized Capon method

The method proposed by Capon [1969] (see also
Sekihara and Scholz [1996]) is an alternative formula-
tion to find optimal estimators. In this method one
attempts to find a vector Gi. which ‘‘filters out’’ the
activity that arises from one special location, and
suppresses the activity from all others. It should be
parallel to the forward solution of the target dipole at
the location of interest and at the same time orthogonal
to the forward solution of all the other dipoles. This
idea can be modified according to the theory of Backus
and Gilbert [1967], i.e., weighting the forward solu-
tions concerning their Euclidean distances to the loca-
tion of interest. This can be stated as:

max
(Gi.

t L.i )2

o
k

Wik(Gi.
t L.k )2

5 max
Gi.

t L.iL.i
t Gi.

Gi.
t (LW̃i.L)Gi.

(16)

with solution

Gi. 5 a(LW̃i.Lt )21L.i 5 aSi
21L.i (17)

Since a ratio is maximized, the result is still undeter-
mined in a scaling factor a. This, however, does not
influence the shape of the resolution kernels. Though
the expression to be maximized appears to be very
different from the ones presented above (it is even
nonlinear in Gi.), its solution is proportional to the
Backus and Gilbert solution with the constraint that
the diagonal elements of the resolution matrix are
equal to one, i.e., it is equal to Equation (12) up to a
scaling factor.

Regularization and/or noisy data

So far we have mainly described possibilities to
minimize the influence of simultaneously active sources
on the estimators, especially those at remote sites.
However, real measurements are contaminated with
signals that do not arise from the brain sources but
from the sensors, the recording system, etc. These
signals also influence the inverse solution and may
even be amplified, which could produce severely
distorted or unstable estimates of real activity. The
behavior of an inverse solution in the presence of noise
is referred to as stability and is closely related to the
numerical ill-conditioning of the spread matrix for the
solutions described here. The most commonly used
procedure to increase the stability of the solution is to
add a ‘‘regularizer’’ matrix M to the spread matrix Si,
or equivalently to minimize a combination of the
spread in Equation (6) and a quadratic form associated
with variance of the estimates [Backus and Gilbert,
1970], given by:

Gi.
t MGi. (18)

Since it is usually impossible to minimize both terms,
the spread in Equation (6) and the variance of the
estimates in Equation (18) at once, a compromise
between the minimization of the spread of the resolu-
tion kernels and the variance of the estimators has to
be made. The relative weight given to each term in this
trade-off is controlled by the so-called regularization
parameter l, 0 # l # 1, whose optimum value can be
determined using the trade-off curve of Backus and
Gilbert [1970], or by standard methods [Bertero et al.,
1988]. Note that when this quadratic form is added to
the minimization of the spread, the optimization prob-
lems and the solutions described so far (Equations
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7–17), remain the same, but Si is substituted by
(1 2 l)Si 1 lM.

Since the regularizer matrix M is introduced to cope
with the noise, M should include as much information
on its statistical properties as possible. If the covari-
ance matrix of the noise S is known, then according to
Equation (4), the contribution of the noise can be
estimated by:

ei
2 5 \Gi.

t n \ 2 > Gi.
t SGi. and then we select M 5 S. (19)

If only the variance of the measurement is known, we
can use M 5 diag (S) and, in general, using an a priori
selected regularizer C we can define M 5 C. If no
information is available, the choice M 5 I, which
corresponds to the Tikhonov-Phillips regularization, is
appropriate.

For illustration purposes, let’s assume that the covari-
ance matrix of the noise is known and all the weight is
given to the minimization of the influence of noise, i.e.,
l 5 1, M 5 S. If, additionally, we constrain the
diagonal element of the resolution matrix to be one
(see Equation 12), we obtain the following optimiza-
tion problem:

min Gi.
t SGi.

s.t. Gi.
t L.i 5 1

with solution Gi. 5
S21L.i

L.i
t S21L.i

(20)

This solution coincides with the generalized Wiener
estimator derived by Sekihara and Scholz [1996] under
the hypothesis that the generators are uncorrelated.
This solution is not meant to optimize the resolution
kernels, but it optimally separates the forward solution
of one dipole from the noise in the measured data.

COMPUTER SIMULATIONS

The computer simulations described in this section
have two main goals: 1) To illustrate the concept and
utility of the resolution kernels using an oversimpli-
fied one-dimensional (1D) model, and 2) to analyze the
possibilities of linear inversion methods in terms of its
resolution kernels. This division into 1D and three-
dimensional (3D) simulations is mainly due to the
difficulties in graphically representing a resolution
kernel for a vector field (the current density j) in a
three-dimensional grid of solution points. Accordingly,
the initial 1D simulations consider a planar model for
the sensors and solution points and a monopolar
model for the sources. Selecting the sources as dipoles
poses the problem of representing a vector field in two
dimensions which obscures the interpretation of the

resolution kernels, the basic goal of this section. The
interpretation of the resolution kernels and how they
can be used to predict the properties of a linear
solution are the basis of understanding the more
realistic 3D simulations. In the subsection entitled
Three-Dimensional Simulations, it is shown how the
Backus and Gilbert resolution kernels are improved by
using a weighting strategy as in the WROP method.
Also, it is shown that there are brain sites where
poor-resolution kernels are obtained even with solu-
tions that explicitly optimize resolution.

The independence of the resolution matrix from the
data, i.e., the independence of the resolution kernels
(see Equation 3), facilitates the simulations, since there
is the need neither to actually compute data nor to
include noise. Another important feature of the analy-
sis of a solution in terms of resolution kernels is that it
includes all the possible active sources, avoiding the
enormous but never exhaustive analysis of resolution
in terms of all possible pairs or triples of sources. An
important claim of this work is that for the case of
underdetermined systems the resolution cannot be
analyzed in terms of single (or pair or triple) sources.

One-dimensional simulations

A set of 101 equally spaced electrical monopolar
sources (i.e., point charges) was assumed to lie on a
line, and 11 measurement electrodes were placed on a
half circle above this line, as illustrated in Figure 1.

The resolution kernels for the MN, B&G, and WROP
methods associated with the estimator for the activity
at location A are shown in Figure 2. They are normal-
ized such that their maximum value is equal to 1,
which facilitates their comparison concerning deltan-
ess and sidelobes. In this case, a favorable resolution
kernel should have a sharp peak around location A,
and fall off rapidly with increasing distance.

As seen in Figure 2, all the resolution kernels have
their main peak near point A, though B&G and WROP
show a slight shift. All resolution kernels tend to
decrease with increasing distance to A, but clear
differences can be observed: although MN has the
sharpest peak around target point A, it has large
negative and positive sidelobes over the whole source
space. In contrast, B&G has the widest central peak
and positive values everywhere. In addition, the reso-
lution kernel of B&G decreases smoothly with increas-
ing distance. The WROP method shows an intermedi-
ate behavior between MN and B&G. The amplitude of
its sidelobes is considerably smaller in most parts of
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the source space than those of MN and B&G, but in
contrast to B&G, these sidelobes also have negative
values. Whereas the negative sidelobe on the left side
of the main peak can be expected to considerably
reduce the reliability of the estimate, those on the right
side seem to be rather small. In fact, the resolution
kernel of the WROP method is the only one which is
nearly zero at larger distances from the target point.

To see the interpretation of the resolution kernels,
assume that we intend to obtain an estimate for
location A while minimizing the influence of other
simultaneously active sources. Obviously, if a resolu-
tion kernel is not zero at A, the estimates contain
information about the activity at A. If a source of

arbitrary strength exists at a location where the resolu-
tion kernel is zero, this source will have no influence
on the estimator of the source at A. If a source at
location B is active, the estimate for point A is a
combination of the activities at locations A and B. Since
all of the presented resolution kernels have greater
values at A than at B, the contribution of A dominates.
However, since this weight is only slightly larger, a
slightly larger source at B would have the same effect
on the estimate as a smaller source at A. It can thus be
concluded that the activity at location A cannot be
estimated independently from the activity at location B
for any of the presented methods. This suggests the
existence of a resolution limit at point A which no

Figure 1.
Sensor and grid point configuration used in the one-dimensional simulations.
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linear method can overcome. This limit is closely
related to the width of the peak at location A.

To analyze the differences between the estimators
provided by the different methods, let us consider
another source at location C. In all cases, the resolution
kernels at C have considerably lower amplitude than
at A. However, the MN method has a clear negative
sidelobe at C, i.e., if a strong source exists at this
location, it might cancel out a weaker source at A. Such
situations question the interpretation of an estimate as
being an average of the real source activity. In contrast,
the resolution kernel of the B&G method has a positive
value at C, which means that the estimate is also
influenced by a source at this location, but the interpre-
tation as a weighted average still holds. In this ex-
ample, the WROP method shows the best behavior: its
resolution kernel is nearly zero at C. Therefore, the
activity at this location hardly contributes to the
estimate of the activity in A.

It is evident from this simple 1D example that
different expectations about the source lead to different
opinions about which one of the given methods should
be preferred. It is up to the experimenter as to which
estimator is selected. Assuming one of the mathemati-
cal expressions presented above as a measure of
resolution, the corresponding optimization procedure
leads to the corresponding optimal estimator. In any
case, the resolution kernels provide a tool for judging
the properties of the resultant linear estimate [Grave
de Peralta Menendez et al., 1996].

Three-dimensional simulations

Figure 3 depicts the MEG sensor configuration
considered in the three-dimensional simulations, which
corresponds to the 148 Biomagnetic Technologies, Inc.
(BTI; San Diego, CA) whole-head system. In the
coordinate system used for this and the remaining

Figure 2.
Resolution kernels for the one-dimensional case associated with target point A.

r Grave dePeralta Menendez et al.r

r 462 r



figures, the positive x-axis points to the front right part
of the figure, the positive y-axis points back right, and
the positive z-axes point upward (right-hand-oriented
system). The selected source space is a half-sphere (in
the positive z-range) of 8 cm radius, with dipoles
placed on a regular grid with an intergrid distance of 1
cm. A homogeneous sphere was chosen as the volume
conductor model.

Figures 4–8 show the resolution kernels obtained
with the different methods for the target point, marked
in the figures as a dark ball. For each figure only the
resolution kernel associated with the y-component is
shown. Every arrow represents how an active source at
the corresponding location would affect the estimate of
the y-component at the target point. A dipole perpen-
dicular to the arrow has no influence, while a dipole
parallel to the arrow has maximal influence on the
estimator under consideration. The volume of the
arrows is proportional to the absolute value of the
resolution kernel at this location. For graphical rea-
sons, the largest arrow was normalized to have unitary
length.

Figures 4–7 show the resolution kernels obtained for
a superficial source at (5, 0, 6) cm. In Figure 4 the
resolution kernel of the B&G method (with the original
weights proposed for the case of vector fields) is
shown. As predicted in the theoretical section, the

resolution kernels are not decreasing with the distance
to the target point, indicating a large influence of
almost every dipole in the grid on the estimates for the
target point. The considerable reduction of this influ-

Figure 3.
Magnetic sensor configuration used for three-dimensional simula-
tions. Magnetic field is assumed to be recorded with a 148-channel
magnetometer system.

Figure 4.
Resolution kernel obtained with the B&G method and associated
with the x-component of a source placed at the point represented
by the dark ball. Location of the point: (0, 5, 6) cm.

Figure 5.
Resolution kernel for the CB&G method. Target point as in
Figure 4.
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ence, obtained by selecting the weights according to
the same philosophy of Backus and Gilbert [1968] for
the scalar case (CB&G), is illustrated in Figure 5. Note
that the distant points have smaller arrows, which
results in better estimates for the target point. The WROP
method, represented in Figure 6, produces the best

estimates since the larger arrow is not only found at
the target point but is also pointing in the desired
y-direction. Considerable sidelobes are present, but a
rough estimation of the resolving length around this
point could still be derived. The resolution kernel for
the MN method is shown in Figure 7. A comparison
between MN and WROP shows that both resolution
kernels are very similar near the target point, but that
the resolution kernel of MN is more widespread. This
results from the weighting strategy depending on the
Euclidean distance used in the WROP method.

Figure 8 shows a resolution kernel for the WROP
method, for a target point at a deeper location (0, 0, 4)
cm. This example illustrates the clear limits of linear
inversion methods: even though the resolution was
explicitly optimized for this location, the resulting
estimator cannot satisfactorily suppress the influence
of possible active sources, which have the same direc-
tion but are more superficially located. In fact, the
resolution kernel does not even have a maximum at
the location of interest and is very widespread. The
interpretation of an estimate obtained with this resolu-
tion kernel as a local average of the activity around the
target point is not possible. A reliable estimate for this
point is only possible if no active source in nearly any
superficial areas of the source space exists, a situation
not likely to occur in normal brain processes. If
additional superficial sources cannot be excluded a

Figure 6.
Resolution kernel for the WROP method. Target point as in
Figure 4.

Figure 7.
Resolution kernel for the MN method. Target point as in Figure 4.

Figure 8.
Resolution kernel for the WROP method for the x-component of
a source placed at a deeper location than in previous figures.
Target point (0, 0, 4) cm is marked by the dark ball.

r Grave dePeralta Menendez et al.r

r 464 r



priori, a reliable estimate of the activity at this deeper
point is not possible.

DISCUSSION

We have shown in the theoretical section of the
paper that the selection of a measure of closeness
between the resolution matrix and the identity matrix
results in different inverse solutions with optimal
resolution kernels. The WROP method presented here
is not only an improvement over the original Backus
and Gilbert method for the estimation of vector fields,
but is also a flexible tool for producing compact and
smooth resolution kernels, as illustrated in the simula-
tions. From a numerical point of view, this method
solves a singularity that appears in the B&G method
when the ideal resolution kernel is achievable and thus
Equation (10) is not valid anymore. For this case of
ideal resolution kernels, the singularity results in
instabilities of B&G due to near-singular spread matri-
ces. The interpretation of the WROP method in terms
of a regularized minimum norm sheds light on how
this problem is solved (see Equation 15). Table I
illustrates the selection of weights for different meth-
ods in one example. It corresponds to the estimation of
component y at the target point. The three columns
under the heading Target Point represent the weights
used for the target point components. The last three
columns, associated with Other Points, describe the
weighting strategy for all the other points, where the
resolution kernel should be zero in the ideal case. The
basic idea that the estimator of one component at the
target point (e.g., the y component) should only de-
pend on the y component of the other points, with
decreasing influence with distance and without any
influence of the other components, i.e., x and z, is
clearly fulfilled in the WROP method.

One distinctive property of these solutions is their
independence of the discretization of the source space.
In contrast to the generalized minimum norm type
methods, the estimation can be made independently
for each solution point and therefore no three-
dimensional grid of solution points is required. Thus,
neither interpolation procedures nor artificial discreti-
zation of the solution space is needed. For the case of
the generalized Wiener estimator this fact was already
pointed out in Sekihara [1993]. Even when the compu-
tational burden of these methods is higher than that of
the minimum norm method, it is still comparable with
the burden inherent to generalized minimum norm
methods that consider nondiagonal metrics [Grave de
Peralta Menendez and Gonzalez Andino, 1997]. It is
important to note that all these solutions are highly
sensitive to variations in the selection of weights.
Specifically, if the weights depend upon the geometri-
cal distance, changes on the scale of the source space,
i.e., changes in the physical units, strongly affect the
shape of the resolution kernels. Also, all these solu-
tions can be directly applied to the reconstruction of
sources over the cortical surface, replacing the Euclid-
ean distances by the appropriate distances over the
cortex.

In the second part of this paper, one-dimensional
simulations were presented to show the interpretation
of the resolution kernels and to illustrate their use in
evaluating inverse solutions with respect to the re-
trieval of simultaneously active sources. The same
results can be used to analyze the degree of smoothing
(area under the main peak) of the solutions and the
existence of spurious sources (sidelobes). The resolu-
tion kernels of Figure 2 describe the typical behavior
found in the simulations for all the solution points. The
resolution kernels of the B&G method showed a wide
peak around the target point with small or null

TABLE I. Strategy for selection of weights associated with some of the methods
presented in the text*

Methods

Target point Other points

X Y (target) Z X Y Z

Minimum norm a a a a a a
Original 1 0 1 1 d 1
B&G
Corrected a 0 a a 1 d d a 1 d
B&G
WROP b 1 a b b 1 a b 1 a 1 d d 1 b b 1 a 1 d

* Target component is the y component at the target point.
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sidelobes; MN had a narrower peak but highly oscillat-
ing sidelobes; and WROP showed an intermediate
behavior. From these resolution kernels we can infer
that the estimates produced by the B&G method will
generally be more blurred or smooth than those
produced by MN. MN would thus show more spatial
details, but the question is whether or not these details
were actually present in the original source distribu-
tion or are spurious details produced by the inversion
method. Considering the example in Figure 2, if any
solution leads to a reconstruction with high-frequency
details between points A and B, these details are
probably spurious and not actually dictated by the
data. This conclusion is independent of the particular
data set, since the resolution kernels are intrinsically
determined by the lead fields, i.e., the number and
position of the sensors, and do not depend on the
particular values of the measurements. To conclude:
with a finite number of measurements we are unable to
retrieve spatial details of the actual source distribution
below a certain size. If any solution finds such details
they are superfluous. If a method fails to adequately
suppress or minimize such spurious features, actual
and ghost sources will be mixed up in the reconstruc-
tion. Returning to the example in Figure 2, we also
conclude that if any solution shows a featureless
appearance between points A and B, it cannot be
determined whether this is due to the actual properties
of the original sources or to the smoothing imposed by
the limited amount of data. However, if some details
appear between points A and C, this property was
likely present in the original sources, since the resolu-
tion kernel shows that features at this length scale can
be adequately resolved. It follows that the spatial
resolution of a solution is completely determined by
the resolution kernels. It thus makes sense to design
solutions with optimal resolution kernels. Neverthe-
less, the resolution kernels, even if optimized, can be
very different from the ideal resolution kernel, i.e.,
peaking far from the target point and/or having highly
oscillating sidelobes. For these locations it becomes
very difficult to define the spatial resolution.

Concerning the 3D simulations, a discouraging but
not surprising finding is that the quality of the resolu-
tion kernels degrades with the depth of the target
point. A certain eccentricity value seems to exist below
which all solutions fail to obtain adequately centered
resolution kernels around the target point. At those
points not even blurred estimates of the activity can be
derived from the available data. It suggests that,
unfortunately, not even a low-resolution 3D reconstruc-
tion of the current generators in the whole brain
[Pascual Marqui et al., 1995] can be obtained unless

additional information about brain activity can be
provided. Additional simulations for the case of elec-
tric measurements and using generalized minimum
norm solutions, e.g., weighted minimum norm, maxi-
mum smoothness, and averaged solutions, showed
similar results [Grave de Peralta Menendez and Gonza-
lez Andino, 1997]. These later simulations illustrated
that while the columns of the resolution matrix might
have a peak around the target point, this is not the case
for their resolution kernels. In fact, both rows and
columns of R have nearly zero amplitude at several
brain sites. Values of one in the spatial neighborhood
of the main diagonal (adequate source strength estima-
tion) were hardly ever found. In the case of near-zero
amplitudes, the strength of an active source will be
severely underestimated, limiting the reconstruction of
simultaneously active sources of similar amplitudes
but different eccentricities. These unreliable values of
the source strength are one of the basic limitations of
linear inverse solutions, impeding the interpretation of
the reconstruction of currents as a tomography. This
lack of accuracy added to the existence of ghost or
spurious sources and led also to uncertainties in any
posterior analysis, e.g., nonlinear analysis or correla-
tion analysis based on these linear inverses.

We have shown that reconstruction procedures can
be evaluated by exploring the resolution kernels all
over the source space. Another question that can be
evaluated with resolution kernels is the selection of
solution points. As shown in the one- and three-
dimensional simulations, the estimates obtained by
any solution are, at best, averages of the real activity
around the target point. Thus the intergrid distance
can be selected according to the degree of smoothing of
the solution. Since the estimates obtained for very
close points will not produce any change in the
solution, computation time can be avoided. In addi-
tion, the selection of measurement points can be
assessed by selecting the optimal number and posi-
tions of the sensors to obtain ‘‘good’’ resolution kernels
for selected brain regions.

Different aspects of these methods still require more
attention, namely, the inclusion of a priori information
about the sources in the design of resolution kernels
and special situations where the ideal resolution kernel
does not necessarily coincide with the delta function.
Another point currently under study involves different
alternatives to select the parameter b in the WROP
method to derive several linear solutions (e.g., select-
ing b as l times a matrix).

By interpreting the resolution kernels as averages of
the real sources and by noting that the only averages
that can be retrieved are those that can be expressed as
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a linear combination of the lead field functions [Grave
de Peralta Menendez and Gonzalez Andino, 1997], i.e.,
the rows of the lead field matrix in the discrete case, the
theoretical basis for a complete analysis of resolution is
available.
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Hämäläinen MS, Ilmoniemi RJ (1984): Interpreting measured mag-
netic fields of the brain: Estimates of current distributions.
Technical Report TKK-F-A559, Helsinski University of Technol-
ogy.
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