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Gamma band (30–80 Hz) oscillations arising in neuronal ensembles

are thought to be a crucial component of the neural code. Recent

studies in animals suggest a similar functional role for very high

frequency oscillations (VHFO) in the range 80–200 Hz. Since some

intracerebral studies in humans link VHFO to epileptogenesis, it

remains unclear if VHFO appear in the healthy human brain and if so

which is their role. This study uses EEG recordings from twelve

healthy volunteers, engaged in a visuo-motor reaction time task, to

show that VHFO are not necessarily pathological but rather code

information about upcoming movements. Oscillations within the range

(30–200 Hz) occurring in the period between stimuli presentation and

the fastest hand responses allow highly accurate (>96%) prediction of

the laterality of the responding hand in single trials. Our results suggest

that VHFO belong in functional terms to the gamma band that must be

considerably enlarged to better understand the role of oscillatory

activity in brain functioning. This study has therefore important

implications for the recording and analysis of electrophysiological data

in normal subjects and patients.
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Introduction

There is mounting evidence that neural oscillations play

important roles in processes such as attention, perception, motor

action and conscious experience (Engel et al., 2001a; Buzsaki and

Draguhn, 2004; Crone et al., 1998), and that disruption or

increases of activity in various oscillatory networks may be an

important factor in mediating some neurological diseases (Llinas
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et al., 1999). Of particular interest are the neural oscillations in the

gamma frequency range related among other functions to the

anticipation of behaviorally relevant events and the contextual

control of cortical information (Aoki et al., 1999; Engel et al.,

2001b). Recent studies in rats and cats (Chrobak and Buzsaki,

1996; Grenier et al., 2001; Siegel and Konig, 2003) report a

correlation between neural oscillations above 100 Hz and

extending up to 200 Hz with attentive exploration and visual

processing. Intracerebral recordings in monkeys show that 600 Hz

oscillations are modulated by somatosensory stimulation (Baker

et al., 2003) and that this modulation reflects the timing of cortical

spike bursts.

All these animal studies suggest that very high frequency

oscillations (VHFO) play functional roles similar to those reported

for the classical gamma band (30–80 Hz). However, VHFO seems

to also play a pathological role in epileptogenesis. Several

intracranial studies in patients show that neocortical seizures can

begin with low-amplitude high-frequency oscillations (Allen et al.,

1992; Fisher et al., 1992; Alarcon et al., 1995; Traub et al., 2001)

and that high-frequency epileptiform oscillations (HFEOs) appear

in the interictal (between seizures) period (Bragin et al., 1999;

Traub et al., 2001), suggesting that HFEOs may be involved in

seizure generation.

While human electrophysiology has consistently investigated

the functional role of gamma band oscillations, the range of

frequencies above 80 Hz remains largely unexplored. A few

electrocorticographic studies in epileptic patients report a corre-

lation between VHFO and cognitive functions. There is nonethe-

less the concern that high frequency activity might have in such

cases a pathological origin. It remains therefore unclear if VHFO:

(1) are a natural extension of a too narrowly defined gamma band;

(2) do play a different functional role than gamma band activity

(GBA), or (3) are exclusively a pathological phenomenon in

humans. This study aims to clarify these aspects through the

analysis of electroencephalographic data recorded from healthy

volunteers.

http://www.sciencedirect.com
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Materials and methods

To answer these questions, we recorded scalp EEG data in a

population of healthy volunteers performing a visuo-motor reaction

time task requiring left or right hand responses. This is a simple

experimental paradigm where modulation of GBA have been

consistently reported (Averbeck and Lee, 2003; Lee, 2003) and that

combines some of the behavioral situations eliciting HFO in

animals. We started from the hypothesis that neural oscillations

playing a functional role should: (1) be discriminative, i.e.,

consistently modified by stimuli (or behavior) and thus be capable

to discriminate (discriminative power) between different classes of

stimuli (responses), and (2) be predictive, i.e., indicate in a reliable

manner over trials the type of stimuli (behavior) that is being

processed (executed). The latter aspect implies being able to

predict subject’s behavioral state (predictive power) on trials

different from the ones used to evaluate their discriminative power.

We analyzed the behavioral responses of subjects using the left or

the right hand in separate trials and evaluated for the range of

frequencies between 0 and 250 Hz the neural oscillations with most

discriminative power between both movements. We then tried to

decode (predict) from these oscillations and in another set of trials

whether responses were done with the left or the right hand and

compared this decoding with the actual manual response. Neural

oscillations were considered to represent more than a simple

epiphenomena but being of functional relevance when they

provided accurate decoding of hand responses.

Subjects and recording

Twelve healthy right-handed subjects (21–27 years, 6 women)

were tested. Subjects were asked to fixate a central cross whose

onset also served as a warning signal, followed after 3–4 s by a

visual stimulus flashed for 60 ms in random order either in the left

visual field (LVF) or in the right visual field (RVF) (4- horizontal
eccentricity). Subjects were instructed to respond as fast as possible

with one index finger to the visual stimuli. Left and right index

finger responses were assessed in separate experimental blocks and

had to be given independently of visual stimulus position (simple

reaction time task), thus dissociating the manual response from

visual input. Reaction times (RT) were measured using an external

device. Each block consisted of 120 trials and was preceded by a

training session. The position of the head was stabilized by means

of a head and chin rest and the hand of the subjects rested on the

response device throughout the experiment.

The electroencephalogram (EEG) was continuously monitored

at 500 Hz during the whole experiment from 125 scalp electrodes

(Electric Geodesic Inc. system, USA). Recordings were done using

a cephalic reference placed at the vertex. Off-line processing of the

data consisted of (1) Transformation of the data to the common

average reference, (2) rigorous rejection of trials contaminated by

ocular or movement artifacts through careful visual inspection, and

(3) bad channel selection and interpolation. Fourteen electrodes

from the lowest circle on the electrode array, i.e., closest to neck

and eyes, were excluded a posteriori because of their likeliness to

pick up muscular artifacts.

To account for possible electromyographic (EMG) confound in

the scalp recordings of the healthy subjects due to the finger

movements, we also tested one patient AM (female, 27 years, right

handed), which underwent intracranial EEG recordings for

presurgical epilepsy evaluation (see (Blanke and Seeck, 2003)
for a detailed description of the patient). The patient performed the

same visuo-motor reaction time task as used in the healthy

subjects. In the patient, EEG was recorded at 200 Hz from

subdural electrodes covering motor cortex and parietal and

temporal areas of one hemisphere. The covering of motor areas

was assessed by direct electrical cortical stimulation (ECS).

The local ethical committee approved the experiments, and

written informed consent was obtained in all cases.

EEG data analysis

For the analysis, we selected a stimulus-locked time window of

duration equal to the subject’s fastest response. This period was

chosen because it is very unlikely to be contaminated by

electromyographic activity due to the finger response, a potential

confound of high-frequency EEG signals, as the period precedes

the actual movement onset for each single trial. Note that

modulation of gamma band oscillations at the level of the motor

cortex has been reported to be maximal for the period preceding

the actual execution of the movement (Donoghue et al., 1998)

allowing for the accurate decoding of upcoming movements

directions (Mehring et al., 2003; Shenoy et al., 2003) or saccades

(Pesaran et al., 2002) in monkeys. In the simple visuo-motor

reaction time task employed here, subjects can prepare the

forthcoming action before visual stimulus onset, i.e., in the period

between the warning signal that provides information about the

impending event and the imperative visual signal that prompts the

motor response (Leuthold et al., 2004). As a consequence, motor-

related activity in the analyzed period after visual stimulus onset

likely reflects the decision and the cerebral command to move

rather than motor preparation itself.

For each individual subject, the power spectral density (PSD)

was computed for all electrodes and single trials during this

window using a multitaper method with seven sleepian data tapers.

All computations were done in Matlab. For the healthy subjects,

the whole analysis covered the frequency range from 0 to 250 Hz,

i.e., half of the frequency sampling, while for patients it was

limited to the 0 to 100 Hz range, defined by the frequency

sampling set to 200 Hz.

Discriminative power (DP) of neural oscillations

If a certain range of neural oscillations carries relevant

information about the subject’s functional state (preceding the left

or right hand movements in our experiment), then the distribution

of PSD values should have minimal overlap between tasks. Thus,

to select neural oscillations producing significant differences and

minimal overlap between hand responses we use here a measure

termed the discriminative power (DP). The DP reflects the

separation between the left and right hand responses in terms of

their power spectral density (PSD) for each individual frequency. It

is graded between 0 and 100, with zero representing complete

overlap between both PSD distributions (no discrimination

between movements is possible) and 100 representing the perfect

separation between them. The DP provides an estimate per

frequency of the minimum number of trials that can be

unambiguously classified as pertaining to right or left movements

based on a single electrode. As shown below, the use of multiple

(independent) features yields substantial increases in classification

rates. As the Relief method (Kira KaR, 1992) or the Fisher

Criterion (Bishop, 1995) the discriminative power discards
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possible interactions (redundancies) with other variables/features.

However, in contrast to these methods the DP yields absolute

bounded values that can be used to compare different features. Its

formal mathematical definition is given in Appendix A.

The DP introduced here is a feature selection method that helps

to identify which voxels and frequencies (features) provide the

maximum possible discrimination between the categories to

classify. It is a required step in the field of pattern recognition

where the use of large feature sets leads to intractable computa-

tional problems and degrades the performance of the classifier. In

order to select the most discriminative features, the whole set of

trials is divided into two parts: (1) a feature selection set

composed of the first half of trials used to detect the most

discriminative features and (2) a validation set formed by the

second half of trials on which we infer the subject’s intention to

move one hand or the other using features extracted from the

feature selection set. Importantly, the statistical assessment of the

features selected by the DP is automatically given by the

classification values that will approach to chance level if features

are irrelevant or unstable.

Many approaches to feature selection have been developed (Pal

and Mitra, 2004). These approaches can be roughly divided into

two types: filter and wrapper. Filter methods select the best features

over the training set, independently of the classification algorithm

or its error criteria. The idea of filter methods is to rank the features

according to some measure of their capability to separate the

classes that are being considered. A first ranking of the features can

be obtained from the probability values obtained after comparing

the classes statistically. However, statistical tests rely upon central

tendency measures and thus have a propensity to assign highly
Fig. 1. DP vs. Central tendency based statistical tests: Each inset represents the his

of overlaps. Overlap increase from one inset to the next one. The title of each in

standard t test (pt) and (2) the Wilcoxon rank sum test (pr) equal medians). The DP

pt) indicate significant differences (P < 0.01) for the distributions in the first three

however sensitive to this parameter as seen from its monotonical decrease with i
significant values to features that considerably overlap between

classes.

Fig. 1 helps to understand the difference between statistical

tests based on measures of central tendency and the DP. Different

insets are shown representing the histograms of two Gaussian

distributions with increasing overlaps. The significance levels for

two standard statistical tests (two-tailed t test, equal means;

Wilcoxon rank sum test, distributions with equal medians) and

the DP value are given for each case in the inset title. It is easily

seen that both statistical tests continue to detect significant

differences between both distributions despite their enormous

overlap. The level of overlap is however correctly indexed by the

discriminative power measure.

For each subject, we computed the DP for all electrodes and

frequencies over the single trials that belonged to the first block of

trials. Candidate frequencies that might code movement intentions

were selected (using the DP) from the first block of trials only

because the final intention was to evaluate the predictive power

(PP) of every brain rhythm as an encoder of behavior in the second,

independent half of the data set. To complement our study, we did

also carry out a standard statistical comparison between the two

PSD distributions (left and right hand responses) based on a non-

parametric test: the Wilcoxon rank sum test. The Wilcoxon test

(Gibbons and Chakraborti, 1992) is a non-parametric test

(independent of the distribution of the data) that tests the

hypothesis that two independent samples come from distributions

with equal medians. A relevant question in our experimental

protocol is whether VHFO reflect true neural responses or simply

appears as a consequence of electromyographic activity linked to

actual finger movements. Even if experimental design, careful
tograms (50 bins) of two Gaussian distributions that differ only in their level

set reports the significance levels for two standard statistical tests: (1) the

values (DP) are also given in the title. Note how both statistical tests (pr and

insets despite their huge overlap. The discriminative power measure (DP) is

ncreasing overlap.
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EEG inspection, and the selected analysis windows make it very

unlikely that the results are due to electromyographic contamina-

tion, we decided to carry out additional analyses to further rule out

this possibility. We applied exactly the same analysis to intracranial

EEG recordings obtained from one patient evaluated in our

presurgical epilepsy unit while performing the above-mentioned

visuo-motor task.

Predictive power of neural oscillations

To evaluate the predictive power of neural oscillations, i.e., to

know if oscillations detected as relevant over the first experimental

block are stable as to allow prediction of the responding hand over

the second block, we used a multivariate statistical pattern

recognition method known as linear Support Vector machine

(Hastie et al., 2001). Statistical pattern recognition algorithms are

designed to learn and later classify multivariate data points based

on statistical regularities in the data set.

Learning is based in selecting some patterns (features) over the

first block of trials and giving this pattern to the classifier along

with a label that identifies the responding hand. The classifier then

learns a mapping between patterns of brain activity and response

laterality. In our analysis we selected two different types of patterns

(features) in order to compare if a single frequency was better able

to code the intentions of forthcoming movements than a broad

frequency band: (F1) The PSD at all electrodes for the most

relevant frequency as identified by the DP (a topographic map for a

single frequency); and (F2) The PSD at the five most discrimina-
Fig. 2. Discriminative Power (DP) vs. Frequency (Scalp EEG recordings). Each

discrimination between left and right hand movements) as a function of freque

numbered left to right. Frequency oscillations above 80 Hz allow us to differentia

hand in a large proportion of subjects.
tive electrodes (according to the DP) combining all frequencies in

the range 0–250 Hz.

The percentage of correctly decoded trials was computed using

a leave-one-out cross-validation. Leave-one-out (LOO) cross-

validation is a method to estimate the predictive accuracy of the

classifier. Given n trials available in a dataset, a classifier is trained

on (n-1) trials, and then is tested on the trial that was left out. This

process is repeated n times until every trial in the dataset has been

included once as a cross-validation instance. The results are

averaged across the n trials to estimate the classifier’s prediction

performance. Notably, the LOO estimate is an almost unbiased

estimate of the expected generalization error (Chapelle et al., 2002).
Results

Neural oscillations with high DP

The maximum DP over all electrodes is plotted as a function of

frequency in Fig. 2. Fig. 3 shows the P values obtained from the

comparisons between PSDs of left and right hand responses using

the Wilcoxon rank sum test. To facilitate comparison with Fig. 2,

we plot in Fig. 3 the 1-p values. Order of the subjects is identical

for both figures. The third column of Table 1 shows the most

discriminative frequency for each subject irrespective of the

electrode where it was observed.

Both the DP plot and the table indicate that a large

interindividual variability is observed in terms of the oscillations
panel represents the plot of maximum DP (Electrode providing the best

ncy for each of the 12 healthy subjects. Subjects are ordered into panels

te whether upcoming movements will be executed with the left or the right
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hand responses’ PSD using the Wilcoxon rank sum test Order of the subjects is identical to Fig. 2.
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showing the best DP between both responses. The Wilcoxon test

results show little interindividual variability, a result expected from

the small sensitivity of the test to the PSD distributions’ overlap

(see above). All measures (DP and P values) do however coincide

in one aspect, i.e., oscillatory activity differentiating between hand

response laterality is restricted to rhythms above 30 Hz for all

subjects. Besides, the best discriminative frequencies can reach

values for some subjects that are far beyond the classical definition

of the gamma band (30–80 Hz) considered relevant in electro-

physiological studies. Notably, the alpha or beta bands conven-

tionally used in EEG-based neuroprosthetic control (Millan Jdel et

al., 2004; Wolpaw and McFarland, 2004), provide little discrim-

ination in this task. Generally, the discriminative power augmented

from approximately 30 Hz and remained elevated for some
Table 1

Percentage of correct classifications of laterality of upcoming movements

Subjects Mean RT Minimum

best frequency

F1 (best) F2 (all)

S1 264 33.1 92.5 100

S2 299 42.3 93.2 95.2

S2 352 47.5 87.2 100

S4 236 178.1 83.7 93.5

S5 211 145.1 83.2 85.5

S6 250 31.5 86.9 97.5

S7 273 39.1 92.0 98.8

S8 214 94.7 100 100

S9 288 199 75.3 91.3

S10 274 185.8 93.9 97.6

S11 276 67.7 98.2 100

S12 266 111.8 94.7 94.5

Mean 267 97.97 90.06 96.1

Classification is obtained for a time window of duration equal to the

subject’s fastest response using spectral features for a single frequency (F1)

or the best five electrodes for all frequencies (F2).
subjects up to 220 Hz where a drop was observed. This general

tendency was confirmed by the Wilcoxon test results.

Results for the DP in the intracranial recordings of the patient

are presented in Fig. 4. This patient shows a maximum of DP for

frequencies above 80 Hz with an apparent tendency to imply

frequencies higher than 100 Hz in encoding laterality of the

upcoming movement. Intracranial recordings from this patient

were performed before results of the analysis of healthy subjects

were available. Thus, frequency sampling was set to 200 Hz, which

is traditional in clinical settings but precludes the analysis of

oscillations above 100 Hz. Nevertheless, this result obtained in

intracranial recordings, where no electromyographic contamination
Fig. 4. Discriminative Power (DP) vs. Frequency (Intracranial Recordings).

Plot of maximum DP as a function of frequency for the intracranial

recordings in a patient. A first peak in DP is observed at 75 Hz with a

second equally discriminative peak at 100 Hz. Experimental filter settings

(freq. sampling 200 Hz) preclude analysis of oscillations above 100 Hz.
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is possible, rules out the possibility that observed differences are

due to this effect.

Predictive power (PP) of different neural oscillations

The percentage of correctly decoded trials for each subject,

computed using a leave-one-out cross-validation, is presented in

the last two columns of Table 1 for features F1 (fourth column) and

F2 (fifth column).

PP varied from perfect classification (values of 100% for four

subjects) to a minimum of 75% of the trials. Mean classification

over subjects reached 90% of trials when using a single best

rhythm for each subject and a very high rate of 96% when using

the whole frequency range. As a rule, decoding of imminent

movement laterality was best when based on a broad frequency

band rather than when based on the most discriminative frequency.

All decoding results are well above the 50% chance level expected

in a two-class classification problem.

Spatial distribution of neural oscillations with high DP

Fig. 5 shows the averages of the individual DP values (Fig. 5a)

and its spatial distribution (5b and 5c) for the intervals of

frequencies surrounding the two dominant peaks. Individual DP

values were transformed into z scores before averaging. Insets 5b

and 5c show the spatial distribution of the DP for all frequencies in

the intervals. The average maps over the corresponding frequency
Fig. 5. Spatial distributions of most discriminative electrodes. Panel a shows the av

frequency intervals are shown to reflect the two dominant peaks. Small insets in pa

intervals. The average maps over the corresponding frequency ranges are depicted

is given for each case.
ranges are depicted in the lowermost insets. A right and left view of

the map (facing each other) is given for each case. We display the

maps of the individual frequencies over the considered range to

highlight the spatial stability of the scalp maps around the DP

peaks.

The spatial distribution of the most discriminative electrodes for

the epileptic patient data is shown in Fig. 6. We split the DP spatial

results for the two DP peaks at 73 Hz (6c) and 100 Hz (6d). To

facilitate interpretation, we have incorporated in the topmost left

and right panels the electrical cortical stimulation (ECS) results for

this patient. The left upper panel (6a) depicts sites where ECS

elicited somato-sensations in arm or fingers and the rightmost

panel (6b) the sites where the stimulation induced movements of

the hand (light blue), face (middle blue) or eyes (dark blue).

Dissimilar spatial distributions of DP were observed for the two

different DP peaks but with an overlap over frontal sites partially

covering the motor strip (as indicated by ECS).

The DP distribution for the VHFO showed the maximum (red-

cross) at a site where ECS elicited hand responses and its

neighborhood. High DP values were also observed at more frontal

electrodes lying anterior to the precentral gyrus. Over these

electrodes, the ECS yielded ocular responses. In monkeys, the

premotor cortex is responsive to relatively weak electrical

stimulation and contains a large territory from which eye move-

ments can be elicited (Preuss et al., 1996). Therefore, both the

anatomical position and the amount of ocular responses evoked by

ECS suggest that the electrodes showing high DP for the VHFO
erages of the individual DP values and b and c their spatial distribution. Two

nels b and c show the spatial distribution of the DP for all frequencies in the

in the lowermost insets. A right and left view of the map (facing each other)
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Fig. 6. Spatial distribution of most discriminative electrodes for the intracranial recordings. Upper panels show the electrical cortical stimulation results for this

patient. Panel a depicts sites where somato-sensations in the contralateral arm or fingers were elicited by electrical cortical stimulation. Panel b shows the sites

where the stimulation induced motor responses of the hand (light blue), face (middle blue) or eyes (dark blue). Lower panels show the most discriminative

intracranial sensors for the two DP peaks at 73 Hz (c) and 100 Hz (d).
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cover the lateral premotor cortex. The DP distribution for the 73-

Hz peak was slightly more posterior than for the high frequency

peak and likely covering the motor cortex. The DP maximum for

the 73-Hz peak was located at the superior temporal lobe and

therefore outside the conventional motor areas.
Discussion

Our results indicate that the strength of neural oscillations in the

30–200 Hz frequency-range computed over the period between

visual stimuli onset and fastest subject response allows for the

accurate prediction of upcoming hand movement laterality. It

confirms therefore the existence of a close correlation between

oscillations above 30 Hz and the coding of behavioral responses.

Consequently, both classically defined gamma band oscillations

and VHFO play a functional role in the healthy human brain and

are not necessarily of pathological origin.

The experimental design and the analysis procedure allowed us

to separate the oscillations associated with lateral manual responses

from those associated with lateral visual stimulus processing. The

two motor response classes were by design independent of the

laterality of visual presentation, as ipsi- and contralateral visual

stimuli were equally distributed and thus confounded within each

analyzed class. Therefore, there is no way to explain a successful

prediction of upcoming hand movements based on visual processes

evoked by the preceding visual stimuli. Consequently, it is most

probable that the high gamma band oscillation effects observed

here are linked to motor-related processes.

The spatial distribution of the most discriminative electrodes for

the case of healthy subjects suggests a difference between the map
associated to the classical gamma band peak (centered at 45 Hz)

and the VHFO peak. Most discriminative electrodes for the 45 Hz

peak cluster at occipital and frontal areas while the VHFO peak is

restricted to frontal electrodes with a clear lateralization to the right

hemisphere. This topographical difference might be the reflection

of different functional roles for classical gamma band oscillations

and VHFO. While classical gamma band might underlie visuo-

motor integration processes, the VHFO might reflect the later

stages of motor processing including the decision to move. The

intracranial recordings in the patient support this hypothesis since

high DP values for the VHFO appear at the premotor cortex,

known to be involved in integrating information about which arm

to use and the target to be reached (Hoshi and Tanji, 2004).

Nonetheless, neither the individual DP plots (Fig. 2) nor the

Wilcoxon test results (Fig. 3) or the classification results (Table 1)

provide additional support for the hypothesis of a different

functional role of gamma and VHFO. They however point into

the direction of a too narrowly defined gamma band and a large

interindividual variability. The existence of such large interindi-

vidual variability remains hidden when the analysis is based on

standard parametric or non-parametric tests based on measures of

central tendency. The reasons for such a large variability between

individuals in terms of the most discriminative frequencies are not

clear and will require more specific studies. It is however intriguing

to observe that the (three) fastest subjects show the best

discrimination for very fast oscillations (see Table 1). We were

however not able to detect a consistent relationship between mean

reaction times and most discriminative oscillations.

Probably more significant than the large interindividual

variability is the observation that half of the subjects of our study

show the best decoding in the VHFO-range which is far above the
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one considered relevant for human electrophysiology. In contrast to

animal studies, human electrophysiology systematically dismisses

oscillations above 80 Hz. This may obey to the fact that

oscillations with frequencies above ¨30 Hz are relatively low in

amplitude and are obscured by lower frequency activity. Addi-

tionally, some commercial EEG systems employ low-pass filters

with cut-off frequencies from 70 to 100 Hz. Both facts explain why

high-frequency oscillations are under-recognized in human EEG

studies and their functional role largely ignored. This simple

methodological problem might explain why relating gamma band

oscillations to behavior has remained elusive and lacks reproduc-

ibility between studies and laboratories.

When interpreting the obtained results it is important to keep in

mind that EEG spectral analysis depends upon the reference

(Nunez et al., 1997). The results described in this study were

obtained after transforming the data to the common average

reference. While there are alternatives to transform the EEG data

into reference independent measures of neural activity, e.g., the

Laplacian (Le et al., 1994; Babiloni et al., 1996), we preferred not

to use such transformation. First, the laplacian (as other

derivatives) acts as an amplifier of high (spatial) frequency noise,

which is a serious concern for the inherently noisy single trial data

analyzed here. Second, such transformation will considerably

complicate a direct comparison of our results with animal local

field potential (LFP) recordings or intracranial recordings.

Nevertheless, there is no reason to expect that high frequency

oscillations will be more affected by our reference selection than

classical gamma oscillations. For this reason we believe that the

main conclusion of this paper, namely that VHFO have a

functional relevance, holds no matter what reference electrode

were selected.

One question that derives from our results is whether VHFO

about 100 Hz may reflect a general encoding mechanism observed

across all sensory modalities or whether VHFO are restricted to the

motor system. Very recently, three studies have been published that

provide converging evidences on the functional role of VHFO in

humans and monkeys. One study report LFP modulations within

monkeys V1 over a broad band of frequencies in the 30–240 Hz

frequency-range with graded visual stimulus contrast (Henrie and

Shapley, 2005). The range of frequencies observed in this study

and the broadband extension of the observed modulation coincides

well with our findings in humans. Another study using intracranial

recordings over premotor cortex in one epileptic patient has

reported that only the high gamma oscillations between 60 and 200

Hz were able to dissociate attention memory from motor intention

(Brovelli et al., 2005). Finally, LFP recordings in the monkey

motor cortex identified the range of frequencies from 80 to 200 Hz

as relevant for discriminating between four possible directions of

hand movements (Rickert et al., 2005). Accordingly, task related

modulation of neural oscillations seems to occur over different

species and sensory modalities for a broadband range of

frequencies that extend from classical gamma values below 80

Hz up to nearly 200 Hz. Such modulation is observable at all

spatial scales using field potential measurements, i.e., LFPs,

intracranial recordings and scalp EEG.

Completely understanding the functional role of VHFO in

brain functioning would certainly require invasive studies in

awake animals comparing spiking activity or multiunit activity

(MUA) with global measures of population activity (e.g., Local

Field Potentials) whose reflect can be detected at the scalp. We

have found a very recent study in which MUA and LFP where
compared in the infero-temporal cortex of monkeys engaged in

the passive visualization of different categories of objects

(Kreiman et al., 2006). In this study, the authors found that

LFP activity in the range 100–300 Hz correlates more tightly

with MUA activity recorded by the same electrode than LFP

activity in the lower frequency range. We are finding a similar

result in the preliminary analysis of LFP data recorded from

monkey’s amygdala, which suggests that this is a general

property of the nervous system rather than a structure related

finding. According to the current interpretation of both measures

of neural activity, spiking activity (e.g., MUA) reflects the

outputs of neurons in an area while the LFPs likely reflect the

inputs to and local processing within the area (Mitzdorf, 1985;

Logothetis, 2003), It is therefore not surprising that both, classical

gamma band oscillations and VHFO, are equally important to

detect the direction of an impending hand movement since they

are likely to reflect two different electrophysiological processes

(input and output from the areas) required in a visuo-motor task.

A further confirmation of such dissociation can be obtained from

comparing, in intracranial data, the topography of VHFO above

100 Hz with that of classical gamma band oscillations since one

would expect a better focalization of VHFO if correlated with

MUA. This is unfortunately impossible for us given the low

frequency sampling of our intracranial EEG signals or the coarse

spatial resolution of scalp EEG data. In summary, our results

have following implications. First, electrophysiological studies in

human and animals should be technically adapted to make

recordings and analysis of oscillatory activity above 100 Hz

possible while avoiding aliasing. Second, the prevalent view

linking gamma oscillations to 40 Hz activity needs to be modified

to encompass the broad frequency range that seems to be of

functional relevance. Third, scalp EEG recordings convey

information about VHFO that is disregarded by standard analysis

procedures based on averaging over trials (e.g., ERPs). Finally,

neural models of brain function require adaptation to cope with

the constraints imposed for such interindividual variability,

enlarged frequency range and inclusion of very fast oscillations.
Acknowledgments

This work is supported by the Swiss National Science

Foundation (grants 3152A0-100745 and 3200B0-105867) and by

the European IST Programme FET Project FP6-003758. This paper

only reflects the authors’ views and funding agencies are not liable

for any use that may be made of the information contained herein.
Appendix A. Discriminative power definition

Assume that we have observed/measured or computed one

variable in two different conditions A and B. Denote with a (b) the

vector containing the values corresponding to condition A (B).

Without loss of generality, we can assume that:

amin ¼ min of af g < ¼ bmin ¼ min of bf g

otherwise we swap vectors a and b.

Then the capacity of this variable to distinguish the two

conditions is defined as:

DP ¼ 0 if bmax ¼ max bf g < ¼ amax ¼ max of af g
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otherwise

DP ¼ card a < bminf g þ card b > amaxf g
card af g þ card bf g 4100

where card{.} stands for the number of elements in a set.

In our case, a denotes the vector formed by the PSD over all

trials for a single frequency in condition A, and b denotes the

equivalent vector for the second condition. The discriminative

power denotes then the percentage of times that the conditions A

and B will be correctly identified using as a separator the lines at

the minimum value of PSD for class b and the maximum for class a.

All the values lower than bmin obviously belong to class A.

Similarly all values greater than amax belongs to class B. If the

two min or max values coincide then obviously one class contains

the other.

Note that the DP is based on the extreme observed values and

thus sensitive to outliers. The use of statistics based on extreme

values is common in non-parametric methods as the Kolmogorov–

Smirnov test or the Tuckey–Duckworth test. In similarity to non-

parametric methods, the DP makes no explicit assumptions about

the distribution of the data. However, this is a measure designed to

evaluate finite distribution of neurophysiologically meaningful

spectral data that are normally of compact support.
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