ANA, the inverse problem and the Zero Dipole Localization Error Grave de Peralta, R., Hauk*, O. and Gonzalez Andino S.L. Electrical Neuroimaging Group, Neurology Dept., Geneva University Hospital, Switzerland. *MRC Cognition and Brain Sciences Unit, Cambridge, United Kingdon		
Definition of ANA: the simplest inverse solution with nearly ideal Resolution Matrix		Theoretical properties of ANA (<i>Adjoint Normalized Approximation</i>) inverse matrix
Given the inverse problem for J: V=LJ define the inverse as the adjoint (transpose) of the column normalized lead field L_N , i.e., $G = (Lw^{-1})^{\dagger} = (L_N)^{\dagger}$ where W_{ii} is the norm of the ith Lead Field Column and t denotes transpose.		 Symmetric resolution matrix (in L_N) with ones in the diagonal (unitary gain) what implies: Perfect reconstruction of position and amplitudes of all single sources (for the first time!!) Resolution kernels and point spread functions peaking at the diagonal elements of the resolution matrix.
Symmetric r 1.00 0.48 0.9 1.00 0.7 1.00 0.7 1.00 0.7 1.00 0.7 1.00 0.48 0.9 1.00 0.7 1.00 0.48 0.9 1.00 0.7 1.00 0.7 1.00 0.7 1.00	esolutio 4 0.48 4 0.99 10 0.75 1.0 <i>h 2 Ele</i> <i>points</i>	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

The reconstruction of two sources (sum of rows 1 and 12) attains the maximum (abs) at the 6th coordinate that does not corresponds to any of the active points (see conclusion 2):

1.00 0.45 0.99 0.20

1.00 0.44 0.96

1.00 0.19

1.00

[1.2, 1.42, 1.42, 1.43, -1.50, -1.52, -1.51, -1.50, -0.72, 0.86, -0.74, 1.16]

Simulation results for 148 electrodes and 2451 single sources (817 solution points). Random noise with amplitude up to 15% of the potential at each electrode. For the comparison we use 4 different regularization values for sLORETA (low=0, medium=0.1 and 1, high=10) but all yielded similar results.

Proportion of correctly localized sources (from 0 to 1) vs. distance to the target source (in original space L)

<u>Conclusions:</u> The simulations presented in this paper demonstrates that:

Note max always are always in

the diagonal 🤿

- 1. ANA inverse solution provides excellent localization results in both the transformed and the original spaces and all this with a minimal computational complexity, nevertheless
- 2. The perfect identification of single sources (in location and magnitude!) is not even sufficient for the approximate localization of multiple sources in the normalized space L_N.
- 3. For realistic conditions (data with time varying noise) ANA and EPIFOCUS produce the smaller localization errors.