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Abstract: 
 
This paper presents a comparative study of the capabilities of five distributed linear 
solutions to accurately determine the position of single sources. Two recently 
developed inverse solutions, LAURA and EPIFOCUS are compared to the Minimum 
Norm, the column Weighted Minimum Norm and the Minimum Laplacian. The 
comparison is based on three figures of merit: 1) the number of sources with zero 
localization error, 2) the maximum localization error, and 3) the average localization 
error as a function of the source eccentricity. The best results in terms of the three 
figures of merit are obtained for EPIFOCUS and LAURA. We report for the first time a 
linear inverse solution (EPIFOCUS) capable of localizing all single sources with zero 
dipole localization error for a relatively low number of sensors (100). The robustness 
of EPIFOCUS is additionally evaluated in this paper with noisy synthetic data and 
experimental recordings in epileptic patients. It is concluded that EPIFOCUS is a 
robust method to localize single sources with the following advantages over single 
dipole localization: 1) It is computationally more efficient. 2) It is easily applicable to 
realistic head models (gray matter selected from MRI). 3) Sources are not restricted 
to be dipolar.  The study described in the paper endorses an important theoretical 
conclusion: While it is possible to design linear solutions with optimal performance in 
the determination of the position of single sources, such performance is not 
warranted if multiple sources are simultaneously active. Consequently, lower dipole 
localization error is neither a sufficient nor a necessary condition for the performance 
of a linear inverse solution.  

INTRODUCTION  
 
The solution of the electromagnetic inverse problem, i.e. the localization of the 
generators of the measured EEG/MEG data, remains a challenging problem. The 
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existence of silent sources producing no external fields makes it theoretically 
impossible to retrieve arbitrary source configurations. In practice, the discrete nature 
of the measurement adds some constraints to the reconstruction. Nevertheless, 
under some restrictive conditions, physiologically plausible generators can be 
estimated.  
 
In this paper, we consider the source localization problem under the constraint that 
the generator can be represented by either a point source (dipole) or a larger, but still 
compact, region of the brain. Under this model it is reasonable to compare linear 
inverse solutions in terms of the dipole localization error (DLE). We describe two 
recently developed linear inverse solutions and compare them in terms of the DLE 
with three previously presented linear inverse solutions. For the sake of 
reproducibility we use in this comparison the same configuration (sensors, solution 
space and lead field) considered in ISBET NEWSLETTER #6, December 1995; 
Grave and Gonzalez, 2000; and Grave et al., 2001. 
 
The first solution, LAURA, based on Local AUtoRegressive Averages, makes no 
assumption about the number or location of the sources. As a linear distributed 
solution it can be applied to data generated by single or multiple sources. This 
approach extends the idea used to develop ELECTRA (Grave de Peralta et al., 2000) 
where constraints are derived from the physical laws governing currents and 
potentials in biological media. In LAURA, the existence of a unique solution is 
granted by compensating the lack of information using physically driven local 
averages, i.e., the unknown scalar (or vector field) is decaying as a parametric 
function of the distance as predicted by the electrostatic laws.  
 
The second solution that we consider here coined EPIFOCUS, assumes a single 
concentrated source with unknown location. In contrast with the dipolar model, the 
source model considered in EPIOFOCUS is allowed to have a certain spatial extent, 
which is more neurophysiologically plausible in cases of focal epilepsy than assuming 
the electrical activity to be confined to a point. Since EPIFOCUS is a linear method it 
requires no nonlinear optimization procedure. It is thus, better suited than the single 
dipole fitting for irregular solution spaces as those resulting from constraining sources 
to the gray matter detected from anatomical images.  
 
The capabilities of LAURA and EPIFOCUS to localize the position of concentrated 
sources are compared in what follows with that of the Minimum Norm solution, the 
Weighted Minimum Norm solution, and one implementation of the Minimum 
Laplacian solution. First, we present the results for noise free simulated data. The 
solution producing the best results (EPIFOCUS) is considered for the analysis of 
noisy synthetic data and experimental data. The results of the simulation are used to 
promote the discussion on some theoretical topics related to the design and 
evaluation of linear distributed solutions. In particular, the capabilities of such 
methods to adequately retrieve arbitrary source distributions are considered on the 
framework of the model resolution matrix described in Grave and Gonzalez (1998).  
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MATERIAL AND METHODS 
 
In this section we first describe the setup used in the simulations as well as the 
procedure used to generate the noisy and noise free data.  We next describe the five 
inverse solutions examined, to end with a brief description of the figures of merit and 
the experimental data evaluated. 

Configurations used in the computer generated data  
 
For reproducibility and compatibility with previous publications we use a lead field 
model corresponding to the sensor configuration and solution space described in 
ISBET NEWSLETTER #6, December 1995, Grave and Gonzalez, 2000, Grave et al., 
2001. Namely, a unit radius 3-shell spherical head model (Ary et al, 1981), with 
solution points confined to a maximum radius of 0.8. The sensor configuration 
comprises 148 electrodes. The solution space consists of 817 points on a regular grid 
with an inter-grid distance of 0.133 cm, corresponding to 2451 focal sources.   
 
To study the performance of EPIFOCUS versus the number of electrodes we 
consider the spherical configuration used in our lab with a variable number of 
electrodes and 1152 solution points confined to the innermost sphere (radius 0.84) of 
a four-shell spherical model  (Stock, 1986). The lead field is computed using the 
method of Berg and Scherg (1994).   
 
For the noise free simulations the inverse solutions matrices were applied to the 
potentials maps produced by all the single sources (columns of the lead field matrix). 
Uncorrelated random noise in the range  ±15% of the amplitude of the noiseless data 
was added to each electrode to generate the noisy synthetic data. 

Linear inverse solutions 
 
In the comparison, we include the five linear inverse solutions sketched below. For an 
extensive discussion and description of linear inverse solutions see Grave and 
Gonzalez 1998, 1999. Here we will briefly refer to their mathematical introduction 
and/or their applications to the bioelectromagnetic field. 
 
a) Minimum Norm (MN) solution. It was introduced by Moore (1920) and Penrose 
(1955a and 1955b). It is the natural solution for problems without a unique solution 
and no a priori information. It was initially applied to the neuroelectromagnetic inverse 
problem by Hamalainen and Ilmoniemi (1984).  
 
b) Weighted Minimum Norm (WMN) solution. Described previously in the book of 
Lawson and Hanson (1974), WMN is probably one of the more frequently applied 
solutions second to the MN. The physically sound interpretation of the column 
normalization (all the sources produce equal size measurements) justifies the wide 
use of this solution considered in the framework of the NIP by Goronitsky and Rao 
(1997).  
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c) Minimum Laplacian (ML) solution. Smoothness is a natural mathematical way to 
solve ill-posed problems, and ML has been extensively used during past the century 
(see Philips, 1962 and Wahba 1990 and references therein). Many textbooks refer to 
this technique in the particular context of inverse problems (Tihonov and Arsenin, 
1977; Golberg, 1978, Ripley 1981, etc) as well as the combination of the laplacian 
with weights (Parker, 1994). It has been also considered for the solution of 
bioelectromagnetic problems (e.g. Huiskamp and van Osterom, 1988; Messinger-
Rapport and Rudy, 1988; van Osterom, 1992; Pascual-Marqui et al., 1995; Wagner 
et al., 1996; Fuchs et al., 1999). One of the most controversial implementations of 
this method is probably LORETA, enthusiastically described in ISBET NEWSLETTER 
#6, December 1995, where some main properties of this implementation were 
claimed without confirmation which finally proved not to hold (Grave and Gonzalez, 
2001) 
 
d) Local Autoregressive Average (LAURA) solution. This parametric solution is 
described in the appendix and relies in incorporating physically derived constraints 
into the basic equations used to construct local spatial averages as described in 
Grave and Gonzalez, 1998, Ripley (1981), and Grave and Gonzalez (1999).  
 
e) EPIFOCUS. Linear inverse (quasi) solution designed to localize concentrated 
sources with high accuracy (see the appendix for mathematical details). Due to its 
simplicity, it is particularly well-suited to work with data generated by a dominant (non 
dipolar) concentrated source and realistic (MRI based) head models (Grave et al. 
2001, Lanz et al. 2001). 
 
In the comparison we used the inverse matrices associated with the Minimum Norm 
(MN) solution, the Weighted Minimum Norm (WMN) solution, and the Minimum 
Laplacian (LORETA) corresponding to the configuration described above (ISBET 
NEWSLETTER #6, December 1995, Grave and Gonzalez, 2000 and Grave et al 
2001). The inverse matrices associated with LAURA and EPIFOCUS were computed 
using the same lead field matrix (only available in single precision) according to the 
equations and details given in the appendix. 

Figures of merit used in the comparison 
 
There are at least two alternatives to define the localization error depending on the 
direct use of the estimated inverse solution (bias in dipole localization) or the 
modulus of the estimated inverse solution (dipole localization error). The second 
alternative is used in this paper. For details see Grave et al. (1996). 
 
Since we are interested here in the localization of concentrated sources, we 
computed for each inverse solution the dipole localization error for all the single 
dipoles included on the source space. The solutions are compared in terms of the 
number of sources with zero dipole localization error, the maximum localization error, 
and the average localization error as a function of the source eccentricity. 
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RESULTS AND DISCUSSION 

Computer generated data without noise 
 
Table I below, shows the results obtained for the five linear inverse solutions under 
investigation. The three columns of LAURA correspond to three different exponents, 
that is, linear, quadratic and cubic dependence on the distance. For each solution 
(columns) we represent the percentage of sources with localization error in the range 
associated to the row. In all cases the localization error is scaled (divided by the grid 
size) to yield localization errors in grid units.        
 
According to Table I, EPIFOCUS and LAURA perform better than LORETA, WMN 
and MN since the percentage of sources with zero error are increased to 94.94% 
(EPIFOCUS) and 32.35% (LAURA) from 20.52% (LORETA), 14.24% (WMN) and 
13.42% (MN). Note that LAURA represents a 12% improvement with respect to 
LORETA, doubling the amount that LORETA improved with respect to WMN. In 
addition, the maximum error produced by LAURA and EPIFOCUS is lower than the 
maximum error obtained with LORETA, WMN, or MN. 
 
 EPI 

FOCUS 
LAURA 
exp=3 

LAURA 
exp=2 

LAURA 
exp=1 

LOR WMN MN 

[ 0 – 1 ) 94.94 32.35 29.38 26.44 20.52 14.24 13.42 
[ 1 – 2 ) 5.06 63.24 66.10 68.87 75.97 47.33 47.49 
[ 2 – 3 ) - 4.41 4.53 4.69 3.47 19.71 18.85 
[ 3 – 4 ) -   - 0.04 13.99 12.11 
[ 4 – 5 ) -   - - 4.20 6.24 
[ 5 – 6 ) -   - - 0.53 1.88 
[ 6 – 7 ) -   - - - - 

Max. 
Error 

1 2.45 2.45 2.45 3.16 5.20 5.48 

Table I. Percentage of sources located with error in the corresponding range. 
Columns: Inverse solution. Rows: Range of the localization error in grid units.  
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 Figure 1. Average localization error as a function of the source eccentricity 
 
In Figure 1 we represent the average localization error as a function of the source 
eccentricity. As expected the best performance is obtained by EPIFOCUS with nearly 
zero average error for all eccentricities. LAURA (for all the three exponents) has 
average error lower than 1 almost everywhere and performs better than LORETA, 
except for one interval. Both, WMN and MN are the only solutions where a clear 
dependency on the source eccentricity is observed. 
 
These results clearly show that to minimize the (maximum possible) localization error 
(independent of the eccentricity) and increase the probability of zero localization error 
we should use EPIFOCUS or LAURA. However, this conclusion will not necessarily 
hold for arbitrary source configurations or experimental data. This was illustrated in 
the comparison presented in Grave (1998) where LORETA and a (radially) Weighted 
Minimum Norm (Grave and Gonzalez, 1998) were applied to ERP and epileptic data. 
While both solutions indicated the same number and location of active regions, only 
some differences on the maxima locations were observed in spite of their different 
behavior for isolated single sources (ISBET NEWSLETTER #6).  
 
It is important to know how the performance of an inverse solution can change with 
the source space configuration and the number of electrodes. To evaluate this effect  
we consider the standard spherical configuration used in our laboratory which 
comprises 1152 solution points as described in section Material and Methods. Figure 
2 presents the results obtained with EPIFOCUS in terms of the number of sources 
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with zero dipole localization errors for different electrodes configurations containing 
25,31,49,68,89,100,131,166 and 181 electrodes respectively.   

 

Figure 2. Number of sources with zero localization error vs Number of 
electrodes for EPIFOCUS 
 
 
Note that a perfect localization (100%) can be already reached with a relatively low 
number of electrodes (100). Electrode configurations on this order are becoming a 
standard in most of the research labs. 

Computer generated data with noise 
 
This section cannot include a comparative study for all the solutions considered 
before due to a lack of data describing the behavior of these solutions in the 
presence of noise.  For that reason, we analyze the noisy data only with EPIFOCUS. 
As described before the noisy data is obtained by adding to the noiseless data a non 
correlated noise vector  that can change from minus 15%  to plus 15% the value at 
each electrode. Since EPIFOCUS is already a quasi solution, i.e., it does not explain 
the data, we use the same matrix  computed for the noise free data. The results are 
illustrated in figure 3.   
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The upper plot of figure 3 shows the empirical probability distribution and the 
empirical density function for the source localization error. Around the 94% of the 
sources are still retrieved with zero localization error and the maximum error is no 
bigger than 2 grid units. The second entry depicts the average localization error that 
remains very close to zero for all eccentricity values.  

Figure 3. Dipole localization error (DLE) for EPIFOCUS with noisy data. Upper: 
Probability and density function of the DLE.  Lower: Average localization error 
as a function of the source eccentricity. 

 

Analysis of experimental data 
 
For the analysis of experimental data we consider realistic head models derived from 
the anatomical MRI of each subject. After segmentation of the anatomical images, a 
set of solution points belonging to the 3D gray matter distribution is selected. The 
selected points correspond to an irregular grid of points with distance between 4 to 6 
mm. The SMAC method described in Spinelli et al. (2000) is used to locate the 
electrodes and compute the lead field. With this lead field that summarize all the 
electrical and anatomical information of the subject we compute the EPIFOCUS 
inverse as described in the appendix.  
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In Lantz et al. (2001a), we assessed the sublobar accuracy of EPIFOCUS analyzing 
the same data where dipolar models (Lantz et al. 1996) and LORETA (Lantz et al. 
1997) found no significant differences for the four epileptic sources detected within 
the temporal lobe.  In another study that will be presented elsewhere (Michel et al. in 
preparation) we analyzed 16 patients with temporal and extratemporal epilepsies. In 
latter study, we applied EPIFOCUS to increase the accuracy of the localization for 
those maps where LAURA solution provided a clear evidence of a dominant 
(concentrated) source. EPIFOCUS results were never in contradiction with the 
available additional independent information, that is, for the case of visible lesions on 
the MRI the located source was always within or in the vicinity of the lesion (tumor). 
For the operated patients, the source was always within the resected area and for all 
patients where intracanial electrodes were available, the recordings confirmed the 
source localization results. The following examples discuss the application of 
EPIFOCUS to two different epilepsy cases: an occipital epilepsy and a temporal lobe 
epilepsy.  
 
Note that in the following figures, the extent of the activated area is strongly 
influenced by the simple neighbor interpolation law used to overlay the discrete 
solution space on the anatomical MRI. 
 
a) Occipital epilepsy 
 
From a methodological (not clinical!) point of view this a really simple case for the 
inverse solutions. According to the MRI, this patient presented a clear lesion (tumor) 
on the parieto-occipital region. For the inverse solutions we considered averaged 
spikes measured on 125 surface electrodes. The results of EPIFOCUS and the 
Weighted Minimum Norm (WMN) are presented in figure 4. Although both solutions 
coincide in detecting a clear occipital maximum they slightly differ in the lateralization 
of it. Probably influenced by the noise, the WMN solution shows a maximum at the 
left tip of the occipital lobe that extends also to the right. In contrast EPIFOCUSS, 
shows a clear left occipital maxima nearby the MRI lesion, which is not as superficial 
as the WMN maxima. The fact that the WMN located the focus closer to the brain 
border than EPIFOCUS coincides with the simulation result of previous section. In 
spite of this, both inverse solutions are within the resected region and the patient is 
seizure free. 
 
 
 
b) Temporal epilepsy 
 
For this temporal lobe patient an invasive pre-surgical study was carried out since no 
abnormalities were detected in the structural (MRI) or metabolic images. The EEG 
study was carried out using 125 surface electrodes, and one sub-dural grid (8x8 
contacts) as well as 2 stripes (2x4 contacts and 3x6 contacts) on the right temporal 
lobe. The intra-cranial data revealed (Lantz et al. 2001b) the temporal propagation of 
the epileptic discharge from the anterior to the posterior part of the left temporal lobe. 
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For the inverse solution analysis, a set of averaged spikes measured over the 125 
scalp sensors were considered. While in Lantz et al. (2001b) we preprocessed the 
data (filtering, segmentation and averaging of adjacent maps) before the application 
of the WMN, here we describe the results of applying the inverse solutions to the raw 
data resulting from spikes averaging. 
 
Figure 5 shows the localization results obtained for both solutions. The upper left part 
depicts the superposition of the 125 electrodes waveforms resulting from the 
averaging process (black traces) and the global field power (GFP) in blue. The three 
green markers (1,2 and 3) indicate approximately 3 maxima of the GFP 
corresponding to the latencies where the frontal (1) to posterior (3) transition was 
detected from the intracranial electrodes. The upper right part depicts the three 
potential maps at the marker positions and the lower part presents the results of the 
inverse solutions for the three latencies.  
 
Note that EPIFOCUS clearly identifies the propagation of the seizure discharge (from 
the anterior to the posterior part of the temporal lobe) coinciding with the intracranial 
measurements. While from the cortical intracranial grid it is impossible to assess 
whether the source was at the brain cortex or in a deeper non cortical region, the 
simulation results induce us to trust the source depth suggested by EPIFOCUS. 
EPIFOCUS provided consistent localization results for sources everywhere in the 
brain (deep and cortical) in both noisy and noise free simulations.  As we obtained 
already in Lantz et al. (2001b) the reconstruction provided by the WMN is very 
superficial and seems to be more sensitive to noisy the data, e.g., the reconstruction 
for the third latency is too posterior (Figure 5, lower right, third row). After the 
(standard en bloc) resection of the right temporal lobe the patient is seizure free.   
 
 
 
 
 



 
   

EPIFOCUS 

WMN 

Figure 4. 
Occipital Epilepsy. Analysis of averaged spikes on 125 electrodes without preprocessing. 
The upper left panel shows the superposition of the 125 time curves (black) and lower left 
the global field power (blue). Green marker (1) designs the latency under analysis. Right 
side depicts the potential map and the inverse solutions obtained at the marked latency. 
Only the slice of the maximum is presented.  

 
 

 



 
   

Figure 5. 
Right temporal lobe Epilepsy. Analysis of 
averaged spikes on 125 electrodes without 
preprocessing. Upper left: superposition of the 
125 time curves (black) and global field power 
(blue). Green markers (1, 2, 3) design the 
latencies where transfer was observed from 
intracranial electrodes. Upper right: potential 
maps at the 3 marked latencies. Lower side: 
Results of the inverse solutions for the three 
latencies. First row corresponds to first latency 
and so on. EPIFOCUS solution is shown on the 
left and WMN on the right. On the MRI images 
right is right.  

WMN EPIFOCUS
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 CONCLUSIONS 
 
In this paper we presented a comparative study about the performance of the 
Minimum Norm (MN), the Weighted Mimimum Norm (WMN), the Minimum Laplacian 
(LORETA), LAURA and EPIFOCUS, in the localization of single sources without 
noise.  
 
The two new solutions, LAURA and EPIFOCUS, produced the best results in terms 
of the number of sources with zero localization error, maximum localization error, and 
average localization error as a function of the source eccentricity. LAURA (32%) 
increased by 12 % the number of sources with zero localization error with respect to 
LORETA (20%). EPIFOCUS yielded a 95% of sources with zero localization error. 
The new methods reduce the maximum error from 5.48 (MN), 5.20 (WMN) and 3.16 
(LORETA) down to 2.45 (LAURA) and finally to 1 (EPIFOCUS). The average error of 
LAURA is, except for one interval, better than MN, WMN and LORETA. The average 
error of EPIFOCUS is very close to zero for all eccentricity values. 
 
The study of the performance of EPIFOCUS as a function of the number of 
electrodes shows for the first time that it is possible to obtain perfect localization 
(100%) with a relatively low number of electrodes (100 or more). Furthermore, the 
results of EPIFOCUS for noisy data, where the maximum error is not bigger than 2 
grid units and the average error remains very close to zero, illustrate the robustness 
of this method.   The robustness of this method to noise obeys to the fact that it is a 
quasi-solution, i.e., the data are not totally explained. The resulting effect is similar to 
the one produced by regularization procedures that try to increase the localization 
quality even if the predicted data differs from the measurements. 
  
In summary, the behavior of EPIFOCUSS with both synthetic noiseless and noisy 
data and experimental data indicate that we have at our disposal an accurate and 
computationally efficient tool for the localization of concentrated sources (not 
necessarily dipolar). As shown here, this is immediately applicable to the analysis of 
epileptic data with the advantage over single dipole models of being a method easy 
to implement in scattered solution spaces as the ones arising from segmentation of 
the individual subject MRI. The availability of high accurate localization methods as 
EPIFOCUS may become important in the future, for instance for identifying cases 
where amygdalo-hippocampectomy or other limited temporal lobe resections may 
replace the standard en bloc resections.  
 
The comparative results described in this paper allow extracting some theoretical 
conclusions useful for the design and implementation of linear inverse solutions. That 
EPIFOCUSS localizes all sources with zero dipole localization errors confirms that 
the dependence of the inverse matrix on the a priori information allows for the 
controlled adjustment of the columns of the resolution matrix, that is, the accurate 
retrieval of single sources, theoretically predicted in Grave and Gonzalez (1998). It 
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means that it is possible to design linear solutions with quasi-optimal performance in 
the determination of the position of single sources, i.e., the columns of the resolution 
matrix, can be adjusted at will to obtain quasi-optimal impulse responses (Grave and 
Gonzalez 1998) and thus, very low or even zero dipole localization errors.  
 
The interpretable neurophysiological results obtained in a large variety of 
experimental event related data (Michel et al., 2001) support the choice of LAURA 
when the assumption of a single dominant source is not expected to hold. Still the 
constraints used in LAURA obey physically driven laws more likely to manifest with 
experimental data than with mathematically generated sources models such as the 
current dipole. However, the results of this paper indicate that this physically driven 
constraints are indeed a reasonable choice to deal with dipolar sources in the 
absence of any a priori information.    
 
An additional theoretical conclusion derived from these results is that a lower dipole 
localization is neither a sufficient nor a necessary condition for the performance of a 
linear inverse solution. Moreover, EPIFOCUS and LAURA are particular cases of the 
WROP family (Grave et al, 1998) which demonstrate that the Weighted Resolution 
Optimization is an approach able to produce methods with bad single dipole 
localization properties such as the column Weighted Minimum Norm (WMN) but also 
optimal single source trackers as LAURA and EPIFOCUS.  
 
While the analysis presented here considers only the electrical case, there is no 
theoretical reasons to expect different results for the magnetic case. 
 
APPENDIX 
 
For the researcher interested in testing concrete inverse solutions, we provide here 
all the mathematical details needed for their implementation.  
 
 
LAURA (Local AUtoRegressive Average) solution 
 
In Grave et al. (2000) we presented a new source model constrained by the 
physical properties of the generators of the electrical activity. This alternative 
source model (ELECTRA) allows the restatement of the bioelectric inverse 
problem in three mathematically equivalent ways. One of them transformed the 
original problem associated to the estimation of the current density vector (3D 
vector field) into the determination of the potential in depth (scalar field). Although 
the formulations described in ELECTRA are more restrictive, the solution is still 
non-unique, i.e., infinitely many solutions still exist. However, the physical 
properties of the unknown field (potential in depth) can also be considered to 
soundly pick up one of these solutions. The resulting solution strategy coined 
LAURA takes into account the physical features in the following way: 
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a) Since the potential in depth is scarcely determined by the external potential 
measurements, the resulting inverse problem is highly underdetermined. In other 
words, EEG measurements are not sufficient to fully determine the activity at all brain 
locations. Consequently, the electrical activity at each point can be expressed as a 
combination of the information supplied by the data and the local neighbors.  
 
b) According to elementary potential theory, the Newtonian potential is a function of 
the inverse of the distance, electric potentials  decays as a function of the square 
distance and the electric fields decays with the third power of the inverse distance    
 
To include both aspects we express the activity at each point as a function of the 
neighbors by means of a local autoregressive estimator (Ripley, 1981) with 
coefficients that depend on the distance to the target point, that is, 
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This equation express the unknown function value at the i-th point as a weighted sum 
of the unknown function values at the neighborhood as proposed in Grave and 
Gonzalez (1999). Since the sum of the weigths is one, equation A-1 describes a 
consistent local average. The maximum number of neighboors is N=26 for a three-
dimensional (3D) vicinity and Ni is the actual number of neighboors of point i. A 
neighboorhood is defined by the hexaedron centered at the target point. Such 
selection allows for the consideration of solution spaces derived from anatomical 
images where the intergrid distances might differ in the three coordinate axes. For all 
solution points we use the same exponent ei=1 or 2 or 3 to express the dependence 
with the distance   
The factor Ni/N allows for the correct estimation of the constant function while 
incorporating into the formulation the fact that no primary sources exist outside the 
brain and consequently function values are zero outside brain borders.  
 
Multiplying both sides by an arbiratry factor wi>0 and substracting both sides of (A-1) 
and reorganizing we can obtain a new scalar field that defines implicitely a 
regularization operator (Grave and Gonzalez ,1999): 
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In other words, LAURA’s approach minimizes the norm of the field g, which has 
components that are "spatially more independent" than those of f. One element of g 
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(nearly) zero implies that the corresponding element of f, is (almost) fully predicted 
from its neighbors (A-1) and not by the data. 
Considering the discrete version of the problem: 
 

nJLd += *            (A-3) 
 
Where d stands for the data measured on ns sensors, J is the discretization of the 
unknown function on np solution points and vector n represents the additive noise 
present in the data. The solution is obtained by solving the following variational 
problem for the unknown Np-vector J. 
 

)(* JRLJd λ+−           (A-4) 
 
The regularization operator reads: 
 

WAJJR =)(           (A-5) 
 
According to (A-2), the diagonal element of the i-th row of A is: 
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Where Vi stands for the vicinity of the i-th solution point and dki is the distance from 
the k-th neighbor to the target point i. The off-diagonal elements are zero except for 
k⊂Vi where the value is given by: 
 

ie
kiik dA −−=            (A-7) 

 
When using the source model of ELECTRA (potential in depth), unless we have 
some additional information we set the diagonal matrix W to the identity and ei=2. 
 
For the estimation of the current density vector (vector field with 3 components), one 
can apply previous operator by components . In this case, the regularization operator 
reads: 
 

JIWAJR )()( 3⊗=          (A-9) 

 
Where the symbol ⊗ represents the kronecker product of matrices (Rao and Mitra, 
1971), and the elements of the diagonal matrix W are selected as the mean of the 
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norm of the 3 columns of the lead field matrix associated with point i. This new 
weighting strategy increased significantly the localization capabilities of LAURA. 
While higher exponent values, e.g. ei=11, can increase the number of sources 
perfectly localized up to 50%, in table I we consider only exponent values derived 
from potential theory, that is, ei=1,2 and3.  
 

With previous definitions the products M=WA (scalar field) and M=WA⊗I3 (3D vector 
field) are invertible and the inverse matrix can be computed as: 
 

[ 111 *)()( −−− += ILMMLLMMG tttt λ       (A-10) 

 
For an efficient numerical implementation of equation A-10 consider the following 
elements: 
a) According to the basic kronecker product properties (Rao and Mitra, 1971) only 
matrix WAtAW has to be inverted. 
b) Since all the matrices to be inverted are symmetric and positive definite then, 
compute only the upper triangles and use Cholesky algorithm for the inversion.     
c) Note that the product (RRt⊗I3 )Lt, where R is a Cholesky (triangular) factor of 
(WAtAW)-1, can be done without the explicit computation of the Kronecker product. 
 
EPIFOCUS 
 
Assuming that the data is generated by a single source and accepting (as is the case 
for all regularization algorithms) that the solution will not perfectly explain the data, 
we can obtain an inverse matrix highly sensitive to focal sources. The intuitive idea 
behind this method is to change the original problem to a new space (or variable) 
such that the projection over each location has an increased contrast power. For the 
mathematical implementation, note that the lead field has the following structure: 
  

[ ]npLLLL ,...,, 21=          (A-11) 
 
where each block Li  is formed by ns rows and 3 columns associated with the 
potential generated by the three orthogonal unitary dipoles that can be placed at  the 
i-th solution point. The two following steps produce the desired inverse matrix: 
         
a) Change of variable. Compute the transformed lead field matrix T by normalizing 
each column of L, i.e., T=L*W, where W is a diagonal matrix with elements equal to 
the inverse of the norm of the columns of L. Matrix T has the same structure of L, i.e.,  
 

[ ]npTTTT ,...,, 21=           (A-12) 
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b) Computing the local projectors. To obtain the inverse G, compute the Moore-
Penrose pseudo inverse (Rao and Mitra, 1971) of each block and arrange them in 
the following way: 
 





















=

+

+

+

npT

T
T

G
M
2

1

          (A-13) 

 
The product of this inverse matrix G with the recorded data yields an estimator of the 
weighted current source density. The plot of the modulus of this estimate for each 
solution point, can be interpreted (up to a scaling factor) as the probability of a focal 
source at that point. The column weighting used in the change of variable (step a), is 
essential for the localization features of EPIFOCUS and distinguishes it from other 
projectors used so far. While this weighting corresponds to the widely used column 
Weighted Minimum Norm (Lawson and Hanson,1974), it has never been applied to 
the case of projectors as in equation (A-13). 
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