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This paper proposes and implements biophysical constraints to select a

unique solution to the bioelectromagnetic inverse problem. It first

shows that the brain’s electric fields and potentials are predominantly

due to ohmic currents. This serves to reformulate the inverse problem

in terms of a restricted source model permitting noninvasive

estimations of Local Field Potentials (LFPs) in depth from scalp-

recorded data. Uniqueness in the solution is achieved by a physically

derived regularization strategy that imposes a spatial structure on the

solution based upon the physical laws that describe electromagnetic

fields in biological media. The regularization strategy and the source

model emulate the properties of brain activity’s actual generators. This

added information is independent of both the recorded data and head

model and suffices for obtaining a unique solution compatible with and

aimed at analyzing experimental data. The inverse solution’s features

are evaluated with event-related potentials (ERPs) from a healthy

subject performing a visuo-motor task. Two aspects are addressed: the

concordance between available neurophysiological evidence and

inverse solution results, and the functional localization provided by

fMRI data from the same subject under identical experimental

conditions. The localization results are spatially and temporally

concordant with experimental evidence, and the areas detected as

functionally activated in both imaging modalities are similar, providing

indices of localization accuracy. We conclude that biophysically driven

inverse solutions offer a novel and reliable possibility for studying

brain function with the temporal resolution required to advance our

understanding of the brain’s functional networks.
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Introduction

The noninvasive three-dimensional reconstruction of the gen-

erators of the brain’s electromagnetic activity measured at the scalp

has been termed brain electromagnetic tomography (BET). In
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similarity with anatomical (magnetic resonance imaging; MRI)

and functional tomographies (positron emission tomography or

PET, single photon emission computed tomography or SPECT, and

functional MRI or fMRI), the construction of a brain electromag-

netic tomography requires the solution of an inverse problem.

However, this inverse problem lacks a unique solution. In spite of

this serious difficulty, there is an active past and ongoing research

on this field because of the extreme clinical and research impor-

tance of the problem.

A reliable electromagnetic three-dimensional tomography is,

hitherto, the only possible approach for noninvasively studying a

direct reflection of neuronal activity in human subjects with the

temporal resolution required to trace the dynamic behavior of the

human brain. In contrast to hemodynamic techniques, electrically

reconstructed tomographic images are directly linked to neuronal

processes. Because of their high temporal resolution, these images

provide information about the short time lived neuronal networks

subserving sensory and cognitive events.

Historically, the predominant approaches for solving the BET

associated inverse problem operated on the assumption that only a

discrete number of generators (usually dipoles) were active at a

given time or over a period (e.g., Mosher et al., 1992; Murray et al.,

2002; Scherg, 1990; Sekihara et al., 2002). However, since the

functional activation images produced by these approaches cannot

be considered tomographic reconstructions, they will not be

considered in further detail here (though see Table 1).

A second family of distributed solutions to the BET uses the

general theory developed for linear underdetermined inverse prob-

lems. Underdetermined means that the number of available meas-

urements is smaller than the number of brain sites where the

activity is sought after. This mathematical theory has been devel-

oped or extensively reviewed by Bertero et al. (1985), Groetch

(1984), Parker (1994), and Tikhonov and Arsenin (1977) among

others. Solutions to these problems are typically stated in terms of a

so-called regularization operator (Tikhonov and Arsenin, 1977)

fulfilling a double task: (1) picking one of the multiple possible

solutions by introducing in the formulation of the problem some a

priori information about the true solution and (2) providing

stability to the solution, that is, small variations in the data should

not lead to large variations in the source configuration.

So far the distributed solutions proposed to the BET inverse

problem that opted for a regularization-based approach have



Table 1

Major assumptions of commonly used methods for electromagnetic neuroimaging

Inverse solution Estimated field Source model Regularization and/or

additional parameters

ELECTRA + LAURA LFPs (scalar) Irrotational Mimics biophysical behavior

of irrotational (neural) fields

Dipolar models Dipolar moments

(3D vector)

Irrotational Requires specification of the

number of sources

Minimum norm (MN)

solution

Current density vector Irrotational sources

(ensured by the lead field)

Mathematically selected

L1 and L2 MN solutions

(weighted MN, minimum

Laplacian, etc.)

Current density vector Unrestricted Mathematically selected
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largely relied on mathematically driven operators (see Grave de

Peralta and Gonzalez, 1999 for several examples). While these

operators could be reasonable for general academic problems, they

lack a direct physiological or physical basis. This explains why the

introduction of anatomically, physiologically, and functionally

based a priori information is receiving increased attention

(Bablioni et al., in press; Dale and Sereno, 1993; Fuchs et al.,

1999; Hauk et al., 2002; Liu et al., 2002; Phillips et al., 2002).

This paper shows properties of neurophysiological generators

that are specific to them and thus can be, but have not been, used as

general constraints to the inverse problem. In particular, it is shown

that neurophysiological currents are ohmic and can therefore be

expressed as gradients of potential fields. This fact is used to

reformulate the inverse problem in more restrictive terms, providing

the basis for the noninvasive estimation of intracranial local field

potentials (LFPs) from scalp recorded EEG data. The ohmic char-

acter of the currents is further used to pick a single solution to the

inverse problem by imposing to the solution a spatial structure

dictated by the physical laws that describe the propagation of electric

potentials and fields in biophysical media. This paper gives a

detailed derivation of these constraints together with a description

of the steps required for their mathematical implementation. Aimed

at a multidisciplinary readership, it combines the rigorous mathe-

matical derivations with intuitive explanations about their physical

or physiological meaning. The possibilities offered by this method to

provide reasonable information about the spatio-temporal aspects of

brain processing are illustrated in the analysis of ERPs recorded

from a healthy subject performing a visuo-motor reaction time task

for which fMRI results from the same experiment are available.

The paper is structured as follows. We first consider the

principles leading from microscopic (neuronal level) to macro-

scopic measurements (LFPs) as well as the particular equation

governing the electromagnetic fields and the quasi-stationary

approximation. This section finishes with a mathematically orient-

ed section devoted to the statement and solution of the inverse

problem. The third section describes the constraints used for the

source model (ELECTRA), as well as the method to obtain a

unique solution (LAURA) based on constraints derived from the

physiology and the physics of the problem. To this follows a fourth

section describing the experimental design employed for both the

fMRI and the ERP data experiment. The type of analysis per-

formed for both kinds of data and the inverse solution results are

presented in this section that also discusses the neurophysiological

interpretation of the results in light of the available experimental

evidence. A final general discussion focuses on providing the

intuitive reasoning underlying the incorporation of biophysical

constraints into the solution of the BET and its experimental
support. The results obtained in the analysis of experimental data

in this and previous papers that considered separately this source

model or the regularization strategy are used to argue in favor of

this type of solution. Future possible applications of this method

are similarly introduced.
Theory

From the sources to the scalp fields

Microscopic and macroscopic fields

Brain function is investigated at two different scales: (1) A

microscopic level encompassing the activity of a single or few

neurons studied by single or multiunit recordings in animals and

(2) A macroscopic level reflecting the activity of neuronal ensem-

bles recorded by either intracranial LFPs in patients or animals or

by scalp-recorded electric and magnetic fields.

At the origin of all these measurements are identical neural

phenomena. During cell activation, large quantities of positive and

negative ions cross the cell membrane, moving from the intracel-

lular to the extracellular fluid, and vice versa. For all practical

purposes, this ion movement is equivalent to a current flow, and it

is responsible for all the recorded neurophysiological signals. The

name used to refer to these microscopic currents varies somewhat.

Within the modeling community, they are called impressed

currents while most neurophysiological researchers term them

active currents. Active or impressed are terms used to differentiate

these currents from the passive (also termed return or volume)

currents that manifest as the electrical response of the media to

compensate for charge accumulation at specific sites driven by the

active currents.

At the microscopic level the redistributions in extracellular

ionic charge due to neuronal transmembrane current flows generate

extracellular volume currents throughout the head. These micro-

scopic volume currents, in turn set up field potential gradients that

follow Ohm’s law and are proportional both to the magnitude of

the local currents and to the tissue conductivity. As such, they are

termed ohmic currents.

For axonal and cardiac tissue several comparisons of the

relative field strength from both impressed and volume currents

at the microscopic level show only the latter to be significant (see

Plonsey, 1982, and references therein). Consequently, at the

macroscopic level observable by LFPs, electroencephalography

(EEG), and magnetoencephalography (MEG), the primary currents

are dominated by the microscopic volume currents and can

therefore be modeled as ohmic currents. Macroscopic passive
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volume currents, result from the gross conductivity changes

associated to the existence of different compartments in the head,

that is, brain, cerebrospinal fluid, skull and scalp.

Importantly, since macroscopic primary sources are dominated

by the microscopic volume currents, then the primary currents

perceived by EEG and MEG are ohmic. The mathematical impli-

cation is that they can be modeled as irrotational currents (Grave de

Peralta et al., 2001). As a consequence EEG and MEG measure

essentially the same phenomena (Plonsey, 1982) and can both be

described in terms of ohmic currents.

Electromagnetic fields (Maxwell equations)

The formal relationship between intracerebral currents and

scalp-measured fields is expressed by Maxwell equations that

describe the propagation of the electromagnetic fields within

arbitrary volume conductor models, that is,

jBE ¼ q=e ð1VÞ

j� E ¼ �AB=At ð2VÞ

jBB ¼ 0 ð3VÞ

j� B ¼ lðJ þ eA E=AtÞ ð4VÞ

where E and B are the electric and magnetic fields, J is the total

current density vector, e and l stand for physical properties of the

media, and q is a (charge or current) density.

Eqs. (2’) and (4’) indicate that time varying electric and

magnetic fields are interrelated. However, already in 1967, Plonsey

and Heppner demonstrated that at the range of frequencies asso-

ciated with electromagnetic fields in vivo-media (usually less than

1000 Hz) it is possible to suppress the contribution of the temporal

terms. This is called the quasistatic approach and implies that the

capacitive and inductive effects produced by the temporal varia-

tions of the electric field E and the magnetic field B (see Eqs. (2’)

and (4’)) are irrelevant. The practical consequence of the quasi-

static approach is the assumption that electric and magnetic fields

recorded at the scalp are the instantaneous reflection of the

underlying neural processes. The electromagnetic processes taking

place in the past are irrelevant for the present measurements. To

date, no evidence against this approximation has been reported.

This quasistationary assumption allows for the separate mod-

eling of the electromagnetic fields, that is, the electric field is not

dependent upon temporal variations of the magnetic field and vice

versa:

jBE ¼ q=e ð1Þ

j� E ¼ 0ZE ¼ �jV ð2Þ

jBB ¼ 0ZB ¼ j� A ð3Þ

j� B ¼ lJ Z jBJ ¼ 0 ð4Þ

As described in the previous section, the total current emerging

in biological tissue can be split into two terms, a primary

neurophysiologically driven current (J p) and the volume or sec-

ondary current (rE, i.e., J = Jp + rE). Eq. (4) derives that the

divergence of total current (J ) is zero, which combined with
previous current decomposition, and Eq. (2) yields Poisson’s

equation for the electric potential field:

jBðrjV Þ ¼ jBJp ð5Þ

This equation establishes that the electric potential field, V, is

generated by the divergence of the primary current, which reflects

the fact that solenoidal (divergence-free) currents provide no

contribution to voltage measurements (for a proof based on Green

identities see Grave de Peralta et al., 2000). This theoretical result

is the basis for the selection of the source space metric and the

regularization operator described in next sections. According to

this equation, plotting the modulus of the estimated primary

current, which we would note has thus far been the common

procedure used to depict inverse solutions results, does not reflect

the actual generators. Instead, the actual generators are determined

by the sources and the sinks obtained from the divergence of the

primary current. This is mathematically identical to the Laplacian

of the intracranial fields or the current source density (CSD).

In a similar way, assuming a divergence-free vector potential

and substituting Eq. (3) in Eq. (4) we obtain the Poisson’s equation

for the magnetic field vector potential:

j2A ¼ lJ ð6Þ

In practice, Eqs. (5) and (6) refer to a given volume conductor

model, e.g., multishell spherical models, etc., and should be

solved together with some additional equations, called boundary

conditions.

The continuous and discrete inverse problem

This section aims to formally describe the general mathematical

formulation of linear inverse problems in a compact manner. The

basic equations leading to the statement of the problem are given as

well as the general solution for the underdetermined case. As such,

the section is aimed to those interested in the practical implemen-

tation of the linear solution to the problem and can be skipped by

nonmathematical readers. This section gathers information usually

scattered through many different textbooks.

A compact formulation of the inverse problem can be given

using the Green function formalism (Roach, 1970). Using Green

functions, it is possible to express the inverse problem by a (first

kind) Fredholm linear integral equation denoting the relationship

between the data measured at the external point, d(s), and the

superposition of the contribution of the unknown current density

vector at locations r inside the brain (Fuchs et al., 1999; Greenblatt,

1993; Hämäläinen, 1993; Sarvas, 1987).

dðsÞ ¼
Z
Brain

Lðs; rÞ�JðrÞdr ð7Þ

The Green function is usually denoted in bioelectromagnetism

as the scalar lead field and its gradient as the vector lead field

(Malmivuo and Plonsey, 1995) or simply the lead field. Since the

(vector) lead field function L(s,r) is the derivative of the Green

function, it contains all the information about the boundary con-

ditions as well as the media conductivities or permitivities for the

electric and magnetic cases, respectively. In real conditions, neither

the measurements nor the lead field functions are known for

arbitrary surface and brain locations, but rather only at restricted



Fig. 1. Statistically significant electrical activation maps estimated by the inverse solution when a healthy subject performs a visuo-motor reaction time task. The statistical maps of activation are obtained by

applying a z test to the z score transformed LFPs estimated using the inverse solution. Significance was set at P < 0.05 after correcting for the number of independent tests. The three images correspond to averages

over three different time periods were significant activation was observed: (a) 55–90 ms with activation at visual and parietal areas. (b) 100–200 ms and (c) 220–270 ms.
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Fig. 2. Estimated LFPs transformed to z score for two visual and two motor areas contralateral to the stimulated hemifield and responding hand : right SMA,

right M1, right V1 and right V5/MT.
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discrete sites. Thus, it is reasonable to introduce a discrete

formalism where the integral equation in Eq. (7) is approximated

by a discrete sum, which leads to the following underdetermined

system of linear equations:

d ¼ Lj ð8Þ

Vectors d and j and matrix L represent the discretization of the

continuous functions, that is, dk = d(sk), jm = J(rm), and Lkm = wkm

L(sk,rm) and wkm are the quadrature weights.
Fig. 3. Estimation of LFPs using a biophysically constrained linear inverse solution

distribution of LFP at mean reaction time (300 ms) is shown at the left part of the

temporal behavior of the LFP at the probable location of the right M1 is shown at th

whom the spatial map at the left is shown. This is the raw image produced by

negativity shown by the LFP at M1 accompanying the motor response that res

movements.
The general solution of Eq. (8) can be obtained as the solution

of the following variational problem (Grave de Peralta and Gon-

zalez, 1998; Menke, 1989):

min ðLj � dÞtWdðLj � dÞ þ k2ð j � jpÞtWjð j � jpÞ ð9Þ

Where Wd and Wj are symmetric (semi) positive definite matrices

representing the (pseudo) metrics associated with the measurement

space and the source space, respectively. Vector jp denotes any

available a priori value of the unknown, e.g., from other varieties

of brain functional images. The regularization parameter is denoted
(ELECTRA source model and LAURA regularization strategy). The spatial

figure as an example of the spatial resolution provided by the method. The

e right. The red vertical line marks the mean reaction time for the subject for

the inverse solution without any statistical preprocessing. Note the strong

embles the behavior of LFP recorded in monkeys when performing hand
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by k. Independently of the rank of L, the solution to Eq. (9) is

unique if and only if the null spaces of Wj and LtWdL intersect

trivially, that is, Ker(Wj) \ Ker(LtWdL) = {0}. In this case, the

estimated solution vector ĵ can be obtained using the change of

variable j ¼ jp þ h and solving the resulting problem for h, that is:

ĵ ¼ jp þ ½LtWdL þ k2Wj
�1LtWd½d � Ljp
 ð10Þ

If and only if matrices Wj andWd are positive definite, Eq. (10)

is equivalent to:

ĵ ¼ jp þ W�1
j Lt½LW�1

j Lt þ k2W�1
d 
�1½d � Ljp
 ð11Þ

In the case of null a priori estimates of the current distribution

( jp = 0) and perfectly accurate data, that is, approaching zero, the

general solution can be written as (Rao and Mitra, 1971, sect.

3.3.3):

ĵ ¼ Gd with G ¼ W�1
j LtWdLðLtWdLW�1

j LtWdLÞ�LtWd

ð12Þ

If LW�1
j Lt is invertible we can take the limit of expression 11

(with respect to k) to obtain a simpler expression, that is:

G ¼ W�1
j LtðLW�1

j L t Þ� 1
 ð13Þ

Inverse matrix G is the unique generalized inverse (Ben-Israel

and Greville, 1974, chap. 2, sect. 5) with kernel and range defined by

kernel ðGÞ ¼ W�1
d MðLÞ? and range ðGÞ ¼ W�1

j MðLtÞ where

M(L) = range(L) denotes the space spanned by the columns of L

and the superscript ? stands for the orthogonal complement. This

relationship sheds light on the dependence that exists between the

selected metrics and the only kind of sources that can be perfectly

retrieved that is, those that belong to range (G). To see that the

variational approach includes all linear inverse solutions, note that

for any arbitrary inverse matrixG there are (at least) a pair of metrics

Wj andWd that, when optimized in the sense of Eq. (9), produce the

desired inverse. For example, the minimum norm solution (Hämä-

läinen and Ilmoniemi, 1984; Penrose, 1955; Rao and Mitra, 1971) is

obtained when both metrics are the identity matrix.
Biophysical Constraints to solve the inverse problem

The previous section discussed the general mathematical for-

malism for solving linear inverse problems. However, their solu-

tion can be drastically improved by considering the physical or

technical details concerning the particular inverse problem we want

to solve. Consequently, in this section we consider the inclusion of

a priori information derived from the biophysical laws character-

izing the generation and propagation of electromagnetic fields in

volume conductor media. In particular, we will discuss two types

of biophysical constraints, one related to the source model and a

second one concerning the selection of a regularization strategy.

We would note that both constraints are independent of the

experimenter; a point to which we will return in our discussion

of the present approach in comparison with those at present

typically used by the neuroscientific community.
Biophysical constrains on the Source Model: ELECTRA

As described in Eq. (7), the inverse problem can be compactly

represented by the Green function w that includes all the boundary

conditions. Using that formalism, Eq. (5) can be rewritten as:

V ðrÞ ¼
Z
brain

jBJðr VÞwðr; r VÞdr V ¼
Z
brain

juðr VÞBjwðr; r VÞdr V

¼
Z
brain

juðr VÞBLðr; r VÞdr V ð14Þ

The term jBJpðr VÞ ¼ Iðr VÞ is usually referred as the CSD

(e.g., Mitzdorf and Singer, 1977) and Lðr; r VÞ ¼ jwðr; r VÞ is the
vector lead field.

Eq. (14) confirms that the potential measured at the scalp is

produced by the divergence of the primary sources. It means that

divergence-free vector fields produce no measurable potentials.

For this reason we proposed in Grave de Peralta et al. (2000) to

consider irrotational sources as the only responsible for the

observed EEG data. An example of irrotational source model is

the current dipole commonly used to model neuronal sources.

The proof that the dipole is an irrational source is given in

Appendix A.

The source model denoted by ELECTRA can be equivalently

solved for three different physical magnitudes, consistent with the

source model (irrotational currents): (1) Estimation of an irrota-

tional current density vector Jp ¼ ju with the vector lead field

5w. (2) Estimation of a scalar field, the CSD, jBJpðr VÞ ¼ Iðr VÞ
with the scalar lead field w. (3) Estimation of a scalar field, the

potential distribution u in Q with a transformed scalar lead field

jwðr; r VÞBj.

ELECTRA can be intuitively described as the noninvasive

estimation of LFPs by virtual intracranial electrodes. Consequently,

the instantaneous estimates of intracranial source activity produced

by ELECTRA substantially differ from those produced by typically

used approaches that assume the current density vector as the source

model. The major difference in terms of the instantaneous maps is

that ELECTRA calculates a scalar field and leads to reconstructions

of LFPs with both positive and negative values. In contrast, typical

approaches depict the modulus of the current density vector at each

solution knot (voxel), which is always a positive value. Thus, in

addition to the theoretical advantage of these biophysical con-

straints, there is in parallel a mathematical advantage in that the

number of unknowns estimated by the inverse model is threefold

fewer. Moreover, the LFPs derived by ELECTRA provide polarity

information, which is useful experimentally particularly for com-

parison with intracranial recordings in humans (e.g., Thut et al.,

2000) and animals. In more practical terms, standard methods often

propose one extended source in many situations, whereas ELEC-

TRA proposes two sources with equal or different polarities. These

elements therefore make difficult (on both mathematical as well as

interpretational levels) a straightforward comparison of results

provided by this method with previously published inverse solu-

tions. Nonetheless, we here include a tabulation of the central

aspects of different families of inverse solution methods used by

the neuroscientific community (see Table 1). We do this to provide

the reader with an overview of the major assumptions determining

the strengths and limitations of each approach. Even though this

restriction of the ELECTRA source model reduces the degree of

NeuroImage 21 (2004) 527–539
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underdeterminancy of the inverse problem, it is not sufficient to

produce a unique solution. However, the next section considers

physically sound a priori information that can be used to restore

uniqueness to bio-electromagnetic inverse problems.

Constraints on the regularization strategy: LAURA

The goal of this section is to illustrate that in the bioelectric

inverse problem a sound selection of the regularization operator

can be derived from biophysical laws. This information can be

included in the estimation procedure to pick a solution fulfilling

both the observed data and the bio-electromagnetic constraints.

What will be sustained throughout this section is that neurophys-

iological currents create electromagnetic fields and potentials that

extend beyond the spatial location where they are generated and

flow into the space that surround them. The strength of the

potentials or fields at a certain brain location depends upon the

strength of the current creating the field and upon a power of the

distance separating the site where the current is created to the place

where its effect is detected. This is precisely the idea behind the

regularization strategy termed LAURA (Local Auto-Regressive

Averages) and described in Grave de Peralta et al. (2001) and

Grave de Peralta and Gonzalez (2002). In this approach the

relationship between the brain activity at one point and its

neighbors is expressed in terms of a local autoregressive estimator

with coefficients depending upon a power of the distance from the

point. The details of this regularization strategy are described in

Appendix B.

The particular selection of the power used for the distance is

determined by two factors: (1) the source model we consider as

more likely to emulate actual brain generators and (2) the type of

unknowns we are estimating, that is, LFPs or current density

vectors. For instance, a monopolar source will produce a field that

decreases with the distance more slowly than the field of a dipolar

source. On the other hand, electric fields decay faster than potential

fields. The optimal biophysical selection should be based on actual

measurements of the speed of decay of LFPs with the distance to

their generators in humans or animals. As an example, we will

assume in what follows a widely used model of ohmic current, the

current dipole (see Appendix A), as the basis to derive the

relationships to be used for the estimation of LFPs and current

density vectors.

Let’s start by considering the estimation of LFPs in depth,

described in the previous section as the variant (3) of ELECTRA

source model. The potential field measured at a point r due to a

current dipole (irrotational source) at point r V with dipolar moment

M is given by:

/ðrÞ ¼ M
r � r V

jr � r Vj3
¼ jMjcosh

jr � r Vj2
ð15Þ

where h is the angle between the dipole moment and the r–r V
vector. This equation expresses that, according to electromagnetic

theory, LFPs at a given point depend upon the activity at another

brain site according to a square inverse law. It thus suggests that

while estimating LFPs, the activity at neighbor points should be

related by the inverse of the squared distance.

For the case of the estimation of the vector field J, that is, the

current density vector, we can take into account the ohmic

character of the measurable primary currents to express the
unknowns in terms of the electric field produced by a dipolar

source, that is,

JpðrÞ ¼ r E ¼ 1

4p
3ðM r̂Þr̂ �M

ArA3
ð16Þ

Where r̂ denotes a unit vector extending from the center of the

dipole to the point where we compute the field. This equation

expresses that the strength of electric fields (and accordingly ohmic

currents generated by dipolar sources) fall off with the inverse of

the cubic distance to the target point, and thus provides a

physically sound argument to select the exponents when dealing

with the estimation of the current density vector. It also expresses

that a particular Cartesian component of the current at a given site

depends upon all the components of the field. We could then either

apply the same regularization operator to each individual Cartesian

component of the primary current density vector (3D vector field)

or incorporate the dependencies between the dipole moments into

the model. Introduction of explicit dependences among the current

density components as described by Eq. (16), is another clear

example of sensible physical constraints that can be used in solving

the bioelectromagnetic inverse problem.

All these biophysical elements allow for the selection of a

sound metric to be used as a regularization operator as shown in

detail in Appendix B.
Data analysis

The previous section describes the approach to obtain a unique

solution to the bioelectric inverse problem that relies on physically

derived a priori information about the generators and the fields they

produce in biological media. As any solution to underdetermined

inverse problem, this solution should provide accurate results if the

actual generators fulfill the properties we are incorporating as a

priori information and is likely to fail otherwise. In principle, the

best manner to assess the results of the inverse problem would be

to compare them with intracranial recordings from the same

subjects. Unfortunately, simultaneous high-density scalp record-

ings and intracranial recordings on the same subject are seldom

available and are not hitherto at our disposal.

Testing a biophysically designed inverse solution with artificial

probe sources (dipoles or monopoles) will not evaluate the capabil-

ities of the solution to deal with experimental data. We have

provided evidence that experimental data are generated by ohmic

currents, a fact that establishes fixed spatial dependencies between

the activity (potential and/or current) at a brain site and activity at all

other sites. These relations are absent in the currents attributed to the

type of probe sources commonly used to evaluate distributed inverse

solutions in the field. Such probe sources are constructed with a

value of one for a Cartesian component at a single node and zero

elsewhere. For this reason, we prefer to report the results of applying

the inverse solution described here to the analysis of averaged ERP

data recorded from a single healthy subject performing a visuo-

motor reaction time task. The results are discussed in the framework

of the experimental evidence for similar tasks available from

independent imaging modalities and intracranial recordings in

animals. The fMRI results of the same subject under an identical

experimental paradigm are presented as an independent manner to

assess the localization capabilities of the solution.



Fig. 4. Inverse solution and fMRI results for the same areas shown in Fig. 2 overlaid onto the high-resolution anatomical image of the experimental subject. The

results of the statistical analysis of the inverse solution for: (a) right V1, (b) right V5/MT, (c) right M1 and (d) SMA are shown. The empty space at the

intersection of the red crosshair marks the center of activation detected by the fMRI. Axial, coronal and transverse views are shown for each area. Each inset is

presented at the time of maximal activation of the corresponding area.
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Experimental protocol and recording methods

ERP and fMRI experimental paradigm

A healthy young subject (male, 30 years) completed a simple

reaction time task while fixating a central cross, as white and black

checkerboard stimuli appeared in either the left or right visual field.

The subject was asked to press a sequence of four keys with his left

hand upon stimulus detection in either visual field. Reaction time

was measured according to the first key pressed. Stimuli were cen-

tered at 9.5j eccentricity, measured 3jwide� 4j high, and appeared
with equal probability in each visual field. Stimuli were presented

for 100ms duration. Only stimuli presented to the left visual field

were considered in the present analyses. In the EEG portion the ISI

was randomised between 1500 and 2500 ms, and stimuli were

blocked into series of 120 trials. The subject completed four blocks

of trials after acclimating to the task during a practice session. In the

event-related fMRI protocol, the interstimulus interval varied be-

tween 14.125 and 17.875 s, and the number of trials was 64.

ERP recording and analysis

The EEG was recorded at 500 Hz from 125 scalp-electrodes

(Electric Geodesic Inc. system). Head position was stabilized with

a head and chin rest. Off-line processing of the scalp data consisted
of visual rejection of trials contaminated by artefacts and interpo-

lation of bad channels. The average ERP (300 ms prestimulus to

600 ms poststimulus onset) was computed based on the 126 trials

that remained after artefact removal and were recalculated against

the average reference.

FMRI recording

Functional images were obtained using a single shot gradient-

echo EPI sequence (TR = 2 s, TE = 60 ms, FoV = 240 mm, matrix

size 64 � 64), on a 1.5 T Siemens Magnetom Vision. Each

volume was made of 16 images parallel to the bicommissural plane

covering the entire brain (slice thickness 5mm, gap 1mm). The

acquisition was made of 512 volumes.

Data analysis

Functional magnetic resonance data analysis

The results of the fMRI recording were analyzed using SPM99.

Data were first spatially and temporarily realigned, normalized to a

standard brain based on the MNI (Montreal Neurological Institute)

template, and smoothedwith an isotropic Gaussian kernel (FWHM=

9mm). The statistical analysis was carried out according to the

General Linear Model, using as basis functions the canonical



R. Grave de Peralta Menendez et al. / NeuroImage 21 (2004) 527–539 535
hemodynamic response function and its temporal derivative. An F

test was performed to obtain the statistical parametric map that was

thresholded at P < 10� 6 (nonadjusted) to identify the active

voxels.

Inverse solution computation and temporal analysis

A realistic lead field model was computed based on the

subject’s anatomical MRI. Conductivity values for the three basic

layers (scalp, skull and brain) were selected as in Stock (1987). The

solution space was formed using 3255 pixels distributed within the

gray matter, providing a spatial resolution of 7 mm in the saggital

and coronal directions and 6 mm in the transverse direction. The

LFPs at each solution node were computed for the average ERP

using variant (3) of ELECTRA source model and LAURA’s based

regularization (see Appendix B for details on the implementation).

The exponent used to weight the distance discussed in the previous

section and the appendix was set to two (the proposed selection for

estimation of potentials due to dipoles) and the weights set to one.

Each LFP at a single knot was transformed to z score consid-

ering the mean and standard deviation of the whole ERP interval

that included 300 ms of prestimulus. This procedure aimed to

select pixels with consistent responses to the stimuli during the

whole (poststimulus) period to allow for a simpler comparison with

the single fMRI statistical image associated to the whole interval.

A z test was applied to the z score results (P < 0.05) after

correcting for the number of independent tests (see Appendix C).
Results

Inverse solution activation

Statistical analysis of the estimated LFP yields a clear temporal

separation of three response periods (Fig. 1). A first period

(approximately 55–90 ms poststimulus) showed focal activation

at ipsilateral visual areas as well as bilateral superior parietal areas

and precuneus (Fig. 1a). Significant activation was also observed at

the right infero-temporal gyrus and right insula. During a second

period lasting from 100 to 200 ms (Fig. 1b) we observed spreading

of activity to contralateral visual areas of both hemispheres as well

as dispersal of activity over superior parietal and parieto–occipital

areas. Supplementary motor cortex activation started during this

period. A last period appeared around 220 ms lasting up to 276 ms,

that is, 30 ms before mean reaction time (300 ms) and basically

comprised bilateral motor and premotor areas, occipito–parietal

areas, bilateral activation of the parietal cortex and temporal lobe

(Fig. 1c). At the time of the response (not shown) or slightly after

it, we found significant activation at the ipsilateral cerebellum,

contralateral somatosensory areas, SMA, contralateral putamen–

pallidum, right frontal lobe and at contralateral visual, motor and

premotor areas.

The temporal analysis of the inverse results represented in Fig.

2 for SMA, V1, V5 and M1, indicates a very early and nearly

simultaneous activation of visual areas V1 and MT. The onset of

activation occurs near 50 ms after presentation of the visual

stimuli. This early activation coincides with independent studies

on the visual system in humans (e.g., Buchner et al., 1997) and

animals (e.g., Schroeder et al., 1998) that might be explained by

parallel input to both visual areas (Ffytche et al., 1995). Activation

of superior parietal areas was also very early, occurring within the

first 90-ms poststimulus, which suggest a fast pathway for visuo-
motor transformation via the dorsal visual processing stream (e.g.,

Murray et al., 2001).

Fig. 3 provides an example of the localization results and spatial

resolution provided by the inverse solution. It represents the

average over the 40 ms preceding the motor response of the

solution overlaid onto the individual subject brain using the

MRICro software (Rorden and Brett, 2000). The temporal response

of the contralateral motor area M1 is also shown. The similarity

between the estimated LFP in humans and that recorded with

intracranial electrodes over the primary motor cortex in monkeys

(see Fig. 1B in Donchin et al., 2001) around the time of hand

movement is remarkable. A strong negative deflection is seen to

occur at the time of the movement. Such negative deflections are

usually interpreted as reflecting excitatory spike-causing input to

neurons in the neighborhood of the electrode (Arieli et al., 1995).

A positive deflection is observed after movement execution that

exactly coincides with the recordings on the monkeys.

fMRI activation revealed major clusters in bilateral V1, V5, and

primary motor areas. Strong SMA activation was also observed.

Further clusters of activation appeared at the superior parietal lobe

and basal ganglia. Producing a summarized image over time of the

inverse solution results and the fMRI results revealed strong

similarities in terms of the functionally active areas, as well as

some small differences. For instance, inverse solution showed

activation at the temporal lobes that did not appear on the

functional images. Still correspondence between both modalities

is rather good and localization results for the major activated areas

were excellent. Some examples of this correspondence are shown

in Fig. 4 that depicts the inverse localization results and the fMRI

main activation centroids both overlaid onto the individual subject

MRI. The red crosses indicate the fMRI activation centroids for the

ipsilateral V5, M1, V1 and SMA. The intensity map reflects the

inverse solution results.
Discussion

In the preceding sections, we described properties of biophys-

ical generators that can be used to single out a unique solution to

the bioelectromagnetic inverse problem. In particular, we showed

that existing experimental evidence supports that ohmic currents

produce both scalp and intracranial LFPs. The ohmic character of

the currents is here used to derive a formulation of the inverse

problem (ELECTRA) that aims to noninvasively estimate intra-

cranial LFPs from scalp-recorded data. This formulation reduces

by a factor of three the number of unknowns to be estimated from

the same amount of data, leading to a less underdetermined inverse

problem. A unique solution to the inverse problem is obtained

using a regularization strategy (LAURA) that imposes a spatial

structure to the solution derived from electromagnetic laws. This

unique solution is therefore conceived to be optimal in the sense of

resembling actual brain generators. Importantly, the combination of

LAURA’s metric with ELECTRA’s source model produces a linear

distributed inverse solution that differs from the one obtained using

ELECTRA source model and Tikhonov regularization (Grave de

Peralta et al., 2000) or from a solution combining LAURA’s

regularization and a source model based on the estimation of the

current density vector (Grave de Peralta et al., 2001; Grave de

Peralta and Gonzalez, 2002). By way of example (and to clarify

this point), we would note that both the Minimum Norm (MN) and

Weighted Minimum Norm (WMN) methods use the same source
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model, though with different regularization operators, which in

turn leads to different results. In the same manner, ELECTRA

source model with Tikhonov regularization produces a result that is

different from the one obtained with the same ELECTRA source

model and LAURA’s regularization approach. Thus, the combina-

tion of ELECTRA and LAURA presented here, indeed constitutes

a new inverse solution method.

Theory and practice in solving underdetermined inverse prob-

lem indicate that the only way to overcome lack of information is

by completing the data with expected features of the unknowns we

seek to estimate. However, the information (a prioris) added should

be independent of, that is, not reflected in the model (the lead

field), and complementary to the data. The spatial structure

imposed by LAURA regularization strategy is not included in

the model because lead field computations rely upon the use of

currents produced by dipolar probe sources at each solution knot

(one at the solution knot and zero elsewhere). Thus incorporating

into the constraints to the solution the spatial relationship between

LFP or electric fields dictated by biophysical laws, results in

additional and independent a priori information that suffices to

guarantee a unique solution to the problem.

This novel combination of the ELECTRA source model with

the LAURA regularization operator is distinct from currently used

approaches in several significant ways (see Table 1 for summary).

While the irrotational character of bioelectric sources is indeed

appropriately incorporated in dipolar models, such methods rely on

severe user-dependent a priori information (e.g., the number of

sources to be estimated). In contrast, distributed inverse solution

methods do not have such an assumption regarding the number of

active sources. However, they are in general unable to ensure that

the estimated sources are indeed irrotational. The use of a lead field

computed from dipolar sources, that is, irrotational sources, is

insufficient to ensure the irrotationality of the results, except for the

minimum norm solution that has no component on the null space.

For any other distributed linear solution with a nontrivial compo-

nent on the null space, there is no way to guarantee that estimates

are irrotational unless this is explicitly incorporated as a constraint

(see Table 1 for further comparison). For that reason an explicit

implementation of the irrotationality constraint is required.

The remaining question is the evaluation of the physiological

reliability of the incorporated a prioris, that is, do LFPs actually

behave according to the constraints we have incorporated into the

solution? While there is no doubt about the ohmic character of the

primary currents, further experimental research using intracranial

recordings might be required to assess the exponent used in

LAURA’s regularization approach to model the speed of decay

of electric potentials with the distance to the source.

In previous studies (Grave de Peralta and Gonzalez, 2002 and

Grave de Peralta et al., 2001) we have reported the capabilities of

LAURA’s regularization strategy to localize single probe sources

and compared its results with those of the most widely used source

localization methods. According to these results the use of high

exponent values, that is, fields that decay very fast with the

distance to the source, yields to significant improvements of the

single source localization with respect to other previously tested

solutions (Grave de Peralta et al., 2001). However, it is not our goal

to localize with distributed solutions artificial probe sources, but

rather experimental data. Besides, evaluating the behavior of the

solution with probe sources provides no information about the

behavior of the same solution when multiple sources are simulta-

neously active (Grave de Peralta and Gonzalez, 1998). Previous
arguments indicate that inverse solutions designed to localize

biophysical generators should be evaluated with experimental data

or with independent and well assessed techniques used for func-

tional localization.

We have evaluated the estimation of intracranial potentials

using the ELECTRA-approach by direct comparison with intra-

cranial recordings in epileptic patients. In Michel et al. (1999) we

validated this technique in the localization and study of propaga-

tion of interictal activity In another study, visual activity in the

motor cortex had been proposed from the analysis of surface

evoked potentials in healthy subjects and was then confirmed with

intracranial recordings in patients (Thut et al., 2000). Finally, fast

activation of extrastriate visual areas in color-coded motion stimuli

have been described on the basis of the estimated potentials

(Morand et al., 2000). Concerning the LAURA regularization

strategy, meaningful results have been obtained in studies on

multisensory memory processes (Murray et al., in press), auditory

recognition (Ducommun et al., 2002), illusory contour perception

(Pegna et al., 2002), semantic processing (Khateb et al., 2003), as

well as visual motion processing, mental imagery, face recognition,

and semantic decision (Michel et al., 2001; Michel et al., 2003).

One of the aspects scarcely considered in the evaluation of

inverse reconstructions is the quality of the estimated waveshapes.

Relatively few studies have considered this problem on the frame-

work of distributed models although with very interesting conclu-

sions. The temporal reconstructions provided by linear L2-based

distributed inverse solutions are better than those of spatiotemporal

models (Schwartz et al., 2001) or L1-based reconstructions (Uutela

et al., 1999). A few comparisons with intracranial data (Thut et al.,

2000; Dale et al., 2000) are also extremely appealing, suggesting

systematically that temporal reconstructions of the generators might

be more reliable than their spatial counterparts. We believe that this

observation could constitute the basis for considerable improve-

ments of the spatial estimates. This is the idea behind transforming

the estimated LFP to z scores that serves not only to statistically

assess the activated pixels, but results also in a powerful strategy to

alleviate the pitfalls of the inverse solution. In fact, the inverse

solution maps for a given time frame differ considerably from the

functional activation maps obtained after the statistical transforma-

tion of the data. Spurious activity is minimized after this procedure

because spurious activity tends to systematically appear over time

leading to temporal traces of high amplitude but large temporal

variance. Also the underestimation of the source amplitudes nor-

mally associated to deeper sources is palliated since each temporal

trace is normalized with respect to itself. Consequently, a given

pixel will be detected as functionally active at a given time if and

only if its estimated LFP significantly exceeds at this time its mean

estimated activity.

The accurate estimation of the temporal aspects of the LFPs is

essential for the application of the proposed method to the study of

the dynamics of brain function. For instance, noninvasive estimates

of LFP could clarify the role of brain oscillations in the functioning

of the human brain by assigning particular brain rhythms to

specific areas. Another problem that could be directly addressed

by this method is the investigation of a relationship between the

BOLD hemodynamic response and LFPs. The existence of such

relationships already assessed by Logothetis et al. (2001), in

monkeys was found to be stronger for the high frequency part of

the LFP. The technique proposed in this paper offers the possibility

to continue this line of research noninvasively in a variety of

experiments in humans.
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Although described and illustrated here for the analysis of

electric data, the same model of ohmic currents could be used

for the case of magnetic recordings. This will produce advantages,

which are in mathematical terms similar to the ones described for

the electric case.
Conclusions

In this paper we described properties of neural generators that

can be used to obtain a unique solution to the bioelectromagnetic

inverse problem. We showed that electric fields and potentials

within the brain are predominantly due to ohmic currents. On this

basis we reformulated the inverse problem in terms of a restricted

source model that allows one to noninvasively estimate Local Field

Potentials (LFPs) in depth from scalp data. Incorporating as a priori

information the physical laws predicting the decay of the strength

of potential and fields with the distance to their generation site

defines a physically driven regularization strategy that achieves

uniqueness in the solution. Consequently, both the regularization

strategy and the source model emulate the behavior of the actual

generators of brain activity.

The introduction of biophysical constraints into the inverse

problem yields to estimate of LFP that are consistent in terms of

their spatiotemporal features with experimental evidence available

from recordings in humans and animals. The basic functionally

active areas detected by this inverse solution are in accordance with

the results obtained from experimental physiology and independent

functional localization techniques (fMRI). Due to the high temporal

resolution and the quality of the temporal estimates, we believe that

the noninvasive estimation of LFP based on biophysical constraints

will become a useful tool for the study of brain function in healthy

subjects. Advances in our understanding of the principles underlying

the brain functional networks depend upon understanding the flow

of information and the functional interactions between distant brain

regions. LFPs are easier to understand, treat and evaluate than

current density estimates, which constitutes another appealing

reason to use this model for the solution of the inverse problem.

Methods similar to the ones used to analyze oscillatory neural

phenomena, or binding mechanism in intracranial recordings can

be applied to these inverse estimates provided that the temporal

estimates are reliable. The results presented in this paper and

references therein are a step forward in confirming its reliability.
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Appendix A

This appendix shows that for any media where the Green

function exists, the current density vector of a dipole is an

irrotational vector field. For that, consider the relationship between

the Green function of the Laplacian operator associated to the

geometry under consideration and the Dirac delta function. Under
this formalism, the current density vector of a dipole located at

point p can be written as:

JðrÞ ¼ M��ðr � pÞ ¼ �M�r2
rGðr; pÞ

¼ rrð�M�rrGðr; pÞÞ ðA1Þ

Where jr and j2
r represents the gradient and the laplacian with

respect to variable r. Previous expression shows that the current

density vector of a dipole can be written as the gradient of a scalar

function and thus by definition it is irrotational.
Appendix B

This appendix give the details to implement the method

described in this paper for the case of the current density vector

(3D vector field) and the LFP (scalar field).

(a) Denote by Vi the vicinity of each solution point, defined as the

hexaedron centered at the point and comprising at most N = 26

neighbors.

(b) For each solution point k, denote by Nk the number of neighbors

of that point and by dki the Euclidean distance form point k to

point i (or vice versa).

(c) Compute the elements of matrix A using ei = 2 for scalar fields

and ei = 3 for vector fields.

Aii ¼
N

Ni

X
koVi

d�ei
ki Aik ¼ �d�ei

ki ðA2Þ

(d) Define the diagonal matrix W for the scalar field as the identity

matrix and for a vector field as the mean of the norm of the

three columns of the lead field matrix associated with point i.

(e) Compute matrix M = WA (for scalar field) and M = WA�I3
(for vector field) where � denotes the Kronecker product of

matrices and I3 stands for the identity matrix of dimension 3.

(f) Define the metric in the source space as Wj ¼ ðM tM Þ  and the
metric in the data space as the Identity matrix (if available use

the inverse of the covariance matrix of the data).

(g) Compute the inverse matrix using Eq. (13) for the noise-free

case or Eq. (11) for the noisy data. If no a priori information is

available use Jp = 0.
Appendix C

The Bonferroni method to correct P values is known to be very

conservative. For the case of inverse solutions estimated from Ns

independent sensors it is not difficult to see that the maximum

number of independent estimates in the source space cannot be

higher than Ns. On this basis we propose to correct the P values for

multiple tests by the number of independent sensors instead of

using the number of tests. In our case that corresponds to use Ns =

110 instead of Np = 4024, that is, more than one order less.
References

Arieli, A., Shoham, D., Hildesheim, R., Grinvald, A., 1995. Coherent

spatiotemporal patterns of ongoing activity revealed by real time optical

imaging coupled with single unit recording in the cat visual cortex.

J. Neurophysiol. 73, 2072–2093.



R. Grave de Peralta Menendez et al. / NeuroImage 21 (2004) 527–539538
Bablioni, F., Bablioni, C., Carducci, F., Romani, G.L., Rossini, P.M., Ange-

lone, L.M., Cincotti, F., 2003. Multimodal integration of high-resolution

EEG and functional magnetic resonance imaging data: a simulation

study. NeuroImage 19, 1–15.

Ben-Israel, A., Greville, T.N.E., 1974. Generalized Inverses: Theory and

Applications. Wiley, New York.

Bertero, M., De Mol, C., Pike, E.R., 1985. Linear inverse problems with

discrete data: I. General formulation and singular system analysis. In-

verse Problems 1, 301–330.
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