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Abstract. Recent public demonstrations showed that a system based on 
imagination does not always work [1]. On the other side predicting limb movement 
based on scalp activity has proved to be hazardous [2] and thus other alternatives 
are needed. This paper describes the asynchronous Geneva-BCI based on EEG and 
visual attention to external stimulus able to send commands every 0.5 (or 0.25) 
seconds with very high (98.88%) correct classification rates and optimal (178 
bits/min) theoretical bit rate. This high performance allows for the distant real time 
control of robots using four commands.  

 

1 Introduction  

 Research on brain computer interface has been running for several decades. 
Despite the considerable investment of researchers in the field, the level of success 
achieved in converting theoretical and technical advances into clinical applications 
remains scarce. Thus far, no patient in a complete locked in state has been able to 
systematically control any of the existing devices [3].  

 
Communication devices can be based on monitoring eye movements which can 

be coupled to on-screen virtual keyboards allowing patients to control his 
environment (e.g. lights). Not all patients are however able to control such devices 
because of increasing fatigue of eye movements and the lack of reliable voluntary 
muscle movement. 

 
A second type of devices is based on the direct monitoring of neural activity 

either invasively (spikes/LFP/ECoG) or non-invasively (EEG or MEG). Four types of 
signals, three based on EEG activity and one on MEG activity, have been more 
thoroughly tested in non-invasive BCI research. A slow cortical potential (SCP)-based 
spelling BCI has been developed to allow severely paralyzed patients to communicate 
[4], a system originally tested in patients with intractable epilepsy. Sensorimotor 
rhythms (SMRs) have been used as the critical EEG oscillation for control of a BCI 
device [5] [6]. Another extensively tested BCI controller is the P300 event-related 
brain potential (ERP) BCI developed by Donchin [7]. SCP control and SMR (often 
called mu rhythm) control are learned through visual and feedback and reward and 



might need 5–20 training sessions before significant production of SCPs or mu 
rhythms is achieved, while the P300 BCI needs no training at all. We would note that 
although some motor imagery BCI system (e.g. IDIAP BCI from J. del R. Millan and 
coll.) failed to work in public [1], other promising systems, requiring short  training 
sessions (e.g. Berlin BCI [8]or Graz BCI [9]), are already available in the literature. 

 
Devices based on the invasive or non-invasive monitoring of the brain electrical 

activity might provide a communication channel for patients however, the results of 
the clinical tests are not however yet at the level of expectancies. For instances, 
Birbaumer [3] described the results obtained in a cohort of patients at different stages 
of debilitating diseases who require the use of communication devices. While patients 
at intermediate and early states achieved relatively good control using at least one of 
the two modalities (either P300 or SCP), the results were surprisingly bad for patients 
at the complete locked in state (CLIS). None of the patients diagnosed as CLIS was 
able to communicate using BCI devices.  

 
It general, BCI systems relying upon relatively automatic brain responses (such 

as the P300) and requiring no learning and little training might be the most 
promissory for those cases. The use of steady states visually evoked responses 
(SSVEP) as a BCI modality control considered on what follows belongs to this later 
category. 

  
On this manuscript we aim at proposing a Brain-Computer Interface using 

SSVEP that could satisfy the following ideal constraints: 
 
1) Non-invasiveness, i.e., based on EEG or derived measures.  
2) High transfer rate: Able to send orders each half or quarter of seconds. 
3) Minimal training requirements: Avoid long training periods, reusing classifiers 

obtained in previous sessions. 
4) Able to function in real life conditions (environmental noise), i.e., allowing the 

subject to control the robot while other people talk with him as in a diary life. 
5) Require low level of artificial intelligence to reduce the price of the system. 
6) Able to deal with several classes (˜6).  
 
In particular we present a solution which respond satisfactory to the first 5 points 

while solving only partially constraint 6 since only four classes have being so far 
properly identified and its preliminary results for the case of healthy subjects . 

 
The Geneva Brain-Computer Interface (G-BCI) described here is based on spatial 

visual attention and the so-called steady state visual evoked potentials. While the 
basic experimental design resembles those previously described elsewhere [10-12] the 
main difference remains the feature selection algorithm called the discriminative 
power (DP) [13]. For each feature, the DP estimates the number of true positive given 
that the number of false positive is zero. Using this measure we rank the features and 
build a linear classifier based on the best features and the Proximal SVM approach 
(PSVM) with hyperparameter nu estimated from the training set.  Finally a heuristic 
filtering strategy is added to the output of the classifier to suppress false positives. For 



now on the term classifier will refer to both the PSVM and the filtering strategy of the 
output scores. As for features we use the oscillatory activity in the EEG extracted with 
a simple FFT algorithm.  In summary the brain computer interface presented here is 
based on fast algorithms that allow for an efficient online implementation.  

 
The development of the BCI system was done in two stages. In the first part a 

theoretical study with three subjects and three classes (two frequencies) was 
conducted. Based on the encouraging results of first stage we entered the second 
stage. An additional class (i.e. three frequencies) was included and the system was 
tested online. First subjects drove a virtual wheelchair in a virtual environment. In a 
second experiment two subjects were able to control a robot via internet. 

 
In addition we assessed the artificial intelligence (AI) level needed for virtual and 

real scenarios and confirmed that although scarcely used, a simple stop before 
collision agent (SBCA), was enough to warrant correct execution of the tasks. Thus 
complex obstacle avoidance agents  or expensive sensors were not needed. 

 

1.1 First Stage: Two frequencies 

1.1.1 Theoretical results: off line analysis 

 The data from two healthy subjects participating in 4 sessions were used to 
evaluate theoretically the methodology proposed here. The results from all subjects 
were very similar. Using two visual stimuli (corresponding to Right or Left 
movements of the robot), we were able to correctly identify 100% of the stimuli in ½ 
second and no less than 95% in ¼ second using a 10 folds cross-validation procedure. 
Since the quarter of second is probably not useful for the tas k presented here, we will 
consider classifications based only on half a second in the following. This 
corresponds to 120 decisions per minute or a maximum transfer rate of 120 
bits/minute. In addition similar (about 99%) classification rates were obtained using 
classifiers build on different sessions. That means that the classifier can be computed 
in a single training session. 

1.1.2 Simulation results: online analysis  

On this setting we need to transmit 3 commands to the robot, i.e., Left, Right or 
Continue to move. Since we know precisely the class labels of each EEG windows, 
we can use the well know formula of Wolpaw to estimate the theoretical bit rate. 
Using a sliding window on the training data with 3 classes, we estimated a (very 
pessimistic) lower bound of 87% for the first stage. This value would correspond to a 
bit rate of 107.7 bits/min that surpass most of the methods presented so far based on 
visual attention or other (e.g. motor imagination) strategies. We would emphasize that 
these values remain a theoretical reference since for the case of self paced BCIs, as 
the one presented in this paper, the subject intent is in general not observable.   

 
Experimental results during real time control of a robot simulator by the two 

subjects, using classifiers stored from a training session of a previous day confirm that 
for practical purposes, the classifier can be computed in advance. In addition the 



trajectory described by the robot denoted the (almost complete) absence of false 
positives obtained, nevertheless, at the price of certain rigidity of the “steering wheel” 
induced by the filtering. 

 
 

Figure 1: The subject controls the robot simulator in virtual environment using 
Steady State Visual Evoked Potentials. To simulate a realistic condition the robot 

moves at 0.8 m/s.   

 
Regarding the environmental noise, the subjects refer very low disturbance even 

if people are talking to them. Furthermore the subjects can switch their attention from 
the robot to the speakers without affecting the robot control. However, if the subjects 
try to talk or move, false positives might appear, then, at current stage of 
development, we recommend the subject to refrain from talking while transiting by a 
narrow lane.  

 
For the sake of simplicity the robot simulator included a “stop before collision 

agent” (SBCA) that reduces the robot speed in the vicinity of an obstacle and stops if 
a collision seems unavoidable. Nevertheless, the robot simulator displays whether the 
command is sent by the subject or the SBCA. From these simulations it was clear that 
the SBCA was scarcely (and only) used during the first minutes of user control. 
However, although not really relevant for the real control, we think that SBCA is a 
very important element for the safety the human user and the integrity of the robots. 

 
To check the consistency of this methodology, a third subject with 100% (0.5 

sec) in training data (offline analysis) was able to easily control the robot simulator.  



1.2 Second stage: Three frequencies 

Results from previous stage suggested that further classes could be included 
without additional off line analysis. Nevertheless, the main limitation was that the 
visual stimulations were provided using a standard PC display with a very simple 
graphic card. Under these conditions only another class, i.e., frequency, producing no 
overlap with the frequencies already in use, was available. Nonetheless, the inclusion 
of another stimulation frequency allowed for the definition of four classes and thus to 
control a real robot in real time.  

Since the goal of this work was to provide real control to real subjects, we passed 
directly to the online control of a robot simulator in a virtual scenario.  As expected 
the inclusion of four classes presented no additional difficulties and after a short 
training session of 20-30 minutes the two subjects were ready to try the control in a 
realistic environment. See Figure 1 for a snapshot of the user and the robot simulator. 

During the experiment, subjects controlled the remote robot using a camera on 
the top of the robot as feedback. While the camera provided detailed information 
about textures and colors, distance information was rather poor, nevertheless, users 
were able to follow a person in the distant lab avoiding all the obstacles and thus 
driving the robot to any desired position. While there was no objective value of the 
amount of commands coming from the user and the SBCA, we observed that the 
robot was rarely close to the objects, and thus that the SBCA was almost never used. 
This is probably due to the speed of the real robot which was notably lower than the 
speed used for training in the virtual environment.  

 
 

1.3 Conclusions  

Steady state visual evoked potentials provide an efficient way to develop Human 
machine interfaces characterized by high transfer rates and minimal errors.  Such 
technique used conjointly with a remotely controlled robot should enable telepresence 
using minimal artificial intelligence levels, i.e., simple stop before collision agents 
based on very cheap sensors. Future work will focus on increasing the number of 
possible commands and the test with disabled patients.  
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