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Abstract— This paper proposes a new strategy for improving 

the localization capabilities of linear inverse solutions, based on 
the relationship between the real solution and the estimated 
solution as described by the resolution matrix equation. 
Specifically, we present two alternatives based on either the 
partial or total inversion of the resolution matrix and applied 
them to the Minimum Norm solution, which is known for its poor 
performance in 3D localization problems. The Minimum Norm 
transformed inverse showed a clear improvement in 3D 
localization. The strong dependence of localization errors with 
the eccentricity of the sources, characteristic of this solution, 
disappears after the proposed transformation. A similar effect is 
illustrated, using a realistic example where multiple generators at 
striate areas are active. While the original Minimum Norm 
incorrectly places the generators at extrastriate cortex, the 
transformed Minimum Norm localizes, for the example 
considered, the sources at their correct eccentricity with very low 
spatial blurring.  

 
 

Index Terms—Inverse Problem, Minimum Norm Solution, 
Resolution Matrix, Source Localization. 
 

I. INTRODUCTION 

THE neurolectromagnetic inverse problem (NIP), i.e., the 
reconstruction of the current density vector inside the 

brain responsible for the electric and magnetic fields measured 
near/over the scalp, can be represented by a (first kind) 
Fredholm linear integral equation, denoting the relationship 
between the data measured at the external point, d(s), and the 
superposition of the contribution of the unknown current 
source density distribution at locations r inside the brain [1], 
[2]. 
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The (vector) lead field function L(s,r) contains all the 

information about the boundary conditions, as well as the 
media conductivities or permitivities for the electric and 
magnetic cases, respectively.  

 
Under experimental conditions, neither the measurements 

nor the lead field function are known for arbitrary 
surface/brain locations. However, assuming that the integral 
equation can be approximated by a discrete sum, (1) can be 
represented by an underdetermined system of linear equations: 

 
Ljd =  (2) 

 
Vectors d and j and matrix L represent the discretization of 

the continuous functions, i.e., , )( ksd=kd )( mrj=mj , 

and ),( mkkmkm rsLwL =  and  are the quadrature 
weights. All linear solutions of (2) can be obtained solving a 
variational problem [3]. This yields the inverse matrix G that, 
when applied to the measured data, produces the estimated 

current density vector ˆ , i.e.

kmw

j : 
 

Gdj =ˆ   (3) 
 
Substitution of the measured data, as described in (2), into  

(3) yields the following fundamental equation for 
underdetermined linear systems:  

 

RjGLjGdj ===ˆ  (4) 
 
Here, R=GL denotes the resolution matrix describing the 

relationship between the estimates and the original 
magnitudes. In simpler terms, (4) tells us that our estimates 
separate from the original values by a factor of R. The nearer 
this factor is to the identity matrix, the better the estimated 
solution resembles the original sources.  

 
This relationship was initially noted by the Italian 

mathematician, Giuseppe Peano, in his work related to one 
particular case of linear functionals, i.e., integral of functions. 
In 1967, Backus and Gilbert [4] used the same idea to 
construct solutions to geophysical problems. Since then, 
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additional applications have appeared that can be included in 
this framework (e.g. Beamformers, methods [5]) or that 
generalize this idea to the case of vector fields (WROP as in 
[6]).   

 
In this paper, we reconsider this relationship for the 

development of strategies to improve the performance of 
linear inverse solutions.  The idea is very simple. If there is a 
link between the real sources and the estimates, why not try to 
improve the estimates to make it closer to the real ones? The 
following sections detail our proposal.  

 
 

II. BASIC EQUATIONS 
Formally, (4) can be inverted to obtain the original 

magnitudes from the estimated ones.  However-, the rank of 
the resolution matrix cannot exceed the rank of the lead field 
matrix L. For this reason, and exactly in the same way we do 
with (2), we have to consider approximate (or generalized) 
inverses for R.  

 
For the particular case we are interested in (i.e. the NIP), 

different alternatives exist, depending on the interpretation we 
assign to the blocks of the resolution matrix. Bearing in mind 
that the unknown vector j corresponds to the discretization of 
a continuous vector field, each group of 3 components is 
associated with one location in the brain. Consequently, the 
resolution matrix inherits a particular structure that might 
influence the inversion strategy selected. In the following, we 
will present two approaches corresponding to partial and total 
inversion of the resolution matrix. 

A. Partial Inversion Approaches 
Consider the construction of an inverse solution aimed at 

the correct localization of single sources. The first approach 
consists of approximating the resolution matrix by the 3x3 
diagonal blocks. Assuming that the real source corresponds to 
one single source at location k, only the three components (k-
1)*3+1, (k-1)*3+2 and (k-1)*3+3 of vector j would differ 
from zero. Thus, a partial inverse can be obtained by inverting 
the 3x3 diagonal block associated with point k. 

 
Denote by R  the 3x3 diagonal block associated to 

solution point k and compute where the superscript 
+ denotes Moore-Penrose pseudo inversion. The inverse 
matrix is updated in the following way , where 

 stands for the three rows of the inverse associated to 
point k.  

k3
+= k3RM

kk MGG =:

kG

 
The row-by-row inversion, corresponding to solving the ith 

equation for the ith component of j can be readily calculated. 
The resulting matricial equation to compute this update of the 
inverse is G ; where D is a diagonal matrix 

composed by the inverse of the elements at the main diagonal 
of R and O is a matrix with zeros in the main diagonal and the 
off-diagonal elements as the resolution matrix.  

GOID ][: −=

 
However, there are many arguments against the use of 

partial inversion by rows or by blocks. The main drawback is 
that they are associated with the retrieval of single sources, 
which we know already does not determine the behavior of a 
linear inverse for arbitrary source configurations ([7], [8]). In 
practice, no partial inversion procedure seems to work for all 
source configurations, for this reason we prefer the strategy 
described in next section. 

 

B. Total Inversion of the Resolution Matrix 
As is usual in numerical mathematics, an approximate 

inverse matrix can be obtained by regularizing it, i.e., making 
invertible the matrix by adding a relatively small perturbation. 
The further away the matrix is from the space of the regular 
matrices the bigger the perturbation needed to regularize it. 
Another aspect to consider is the size of the matrix that could 
obstruct the inversion procedure. A solution that seems to 
satisfy both previous aspects is to add a diagonal perturbation 
matrix to the resolution matrix, i.e., invert (D+R) where D is 
a perturbation diagonal matrix using the following identity: 
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This equation considers only the inversion of the diagonal 

matrix and a matrix of size equal to the number of sensors. 
Using the previous formula, the update of the inverse matrix 
G:= MG can be performed without the explicit computation 
of the resolution matrix or its inverse. 

 

III. SIMULATION RESULTS 
For reproducibility and compatibility with previous 

publications, we used a lead field model corresponding to the 
sensor configuration and solution space described in ISBET 
NEWSLETTER #6, December 1995, [7], [8]. Specifically, 
this entailed a unit radius 3-shell spherical head model [9] 
with solution points confined to a maximum radius of 0.8. The 
sensor configuration was comprised of 148 electrodes, and the 
solution space consisted of 817 points on a regular grid with 
an inter-grid distance of 0.133 cm, corresponding to 2451 
focal sources. 

 
The basic figure of merit used to evaluate localization 

accuracy was the dipole localization error, defined as the 
Euclidean distance between the point where the maximum of 
the modulus of the vector field is observed and the actual 
source position. The errors were divided by the size of the grid 
unit (0.133) and were evaluated for x values in the set [0, 0.5, 
1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7].  
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For each value xi, we computed the empirical Density 

function and the empirical Probability function defined as: 
 
Density Function(xi)={ % of sources with errors  >= xi and 

<  xi+1 }*100/2451 
 
Probability Function (xi)={ % of sources with errors <= 

xi}*100/2451 
 
To evaluate possible dependencies of the solution on the 

depth of the source, we used a measure defined as the average 
of the dipole localization error for the sources in an 
eccentricity range. This was the average dipole localization 
error for sources with eccentricities bigger than or equal to the 
lower limit and strictly lower than the upper limit. The 
eccentricity ranges considered were [0.0-0.2), [0.2-0.3), [0.3-
0.4), [0.4-0.5), [0.6-0.7), and [0.7-0.8]. 

   
To illustrate the improvement that can be obtained with the 

total inversion procedure, we considered the Minimum Norm 
solution. This solution corresponds to the Moore Penrose 
pseudo-inverse and is well known for its poor performance in 
the localization of single sources. The perturbation matrix, i.e. 
the diagonal matrix that is added to regularize the resolution 
matrix was defined as 10 times the absolute value at the main 
diagonal of the resolution matrix. This resulted in a diagonal-
dominant matrix that was obviously invertible.  

 
 

 
 
Fig. 1. Results for the Minimum Norm Inverse (MNINV) solution. Upper 
inset: Empirical distribution function and empirical probability function for 
the localization error. Lower inset: Average localization error as a function of 
the eccentricity. 
 

The results for the original Minimum Norm Inverse solution 
(MNINV) and the Transformed Minimum Norm Inverse 
(TMNINV) obtained by regularizing the resolution matrix are 
presented in Fig. 1 and 2, respectively.  Readers interested in 
comparing these localization results with those obtained for 
additional linear inverses, namely, the minimum Laplacian 
and the weighted minimum norm solutions are referred to [8] 

and [10].  
 

 
 

Fig. 2. Results for the Transformed Minimum Norm Inverse (TMNINV) 
solution. Upper inset: Empirical distribution function and empirical 
probability function for the localization error. Lower inset: Average 
localization error as a function of the eccentricity. 

 
The transformed inverse (TMNINV) matrix drastically 

improved its localization capability of single sources with 
respect to the original inverse (MNINV) as revealed by the 
following facts:  

 
1. The localization errors of the TMNINV were 

concentrated in the lower ranges as shown by the 
number of sources with zero dipole localization 
that increased from 13% to 22% and the sources 
with 1 unit error that increased from 34% to 70%. 

2. The TMNINV localized more than 92% of the 
sources with errors lower than 1.5 grid units. 

3. The average localization error of the TMNINV 
was not dependent on the eccentricity and was 
reduced for all eccentricity values to less than 1.4 
grid units. 

4. For the TMNINV, the higher localization errors 
(>2.5 ) only appeared for less than 1.2% of the 
sources and the upper limit of maximum 
localization error decreased from 5.5 to 4.5. 

 
In order to illustrate the practical consequences of using the 

transformed inverse (TMNINV) instead of the original 
minimum norm inverse (MNINV) for the localization of 
multiple simultaneously active sources; we have designed the 
simple, but nonetheless neurophysiologically plausible, 
example presented in Fig. 3. In this computer simulation, we 
calculated both inverses for a solution space of 4024 nodes 
homogeneously distributed within the inner compartment of a 
realistic head model derived from the Montreal Neurological 
Institute average brain (Human Brain Mapping Consortium). 
The solution space was restricted to the gray matter of this 
inner compartment and formed a regular grid of six 
millimeters resolution. The sensor space consisted of 111 
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electrodes with a spatial distribution resembling the 125-
channel Geodesics Sensor Net (Electrical Geodesics 
Incorporated, Eugene, Oregon) without its lowest electrode 
line.  

 
Fig. 3a depicts the positions of the three simultaneously 

active dipoles considered. A dipole was placed within each the 
left and right lingual gyrus (Brodman area 17) to mimic 
bilateral activation of primary visual areas (V1), and a third 
dipole was placed within the left superior frontal gyrus 
(Brodmann area 10). Note that the frontal dipole is higher 
along the axial direction than the visual dipoles, which is 
somewhat obscured by the 3D projection used. All three 
dipoles had identical dipole moments in the three Cartesian 
components, which were set to one. In the picture, voxels 
represented as black circles are the ones where actual or 
estimated strength exceeds the 85% of the maximum strength. 

  
Fig. 3b shows the localization results obtained for the 

original minimum norm solution, and Fig. 3c those obtained 
for the transformed minimum norm. Note that as predictable 
from its well-known limitations, the original minimum norm 
solution produces maxima for all the three sources at the 
borders of the solution space (near the sensors). This will lead 
to the absolutely erroneous conclusions that activity is elicited 
at extra striate visual areas. In contrast, the transformed 
solution correctly indicates bilateral activation of primary 
visual cortex (striate cortex), although slightly more extended 
than in the original source distribution, and a third source 
perfectly localized at the left superior frontal gyrus. Note also 
that the level of spatial blurring (the number of active nodes at 
the selected threshold) of the transformed minimum norm 
solution is considerably smaller than the one present in the 
original minimum norm reconstruction. 

  

Fig. 3. Localization results for three simultaneously active sources. 3a) The 
original three dipoles situated at the left superior frontal gyrus and left and 
right primary visual cortex. Note that the frontal dipole is higher along the 
axial direction than the visual dipoles, which is somewhat obscured by the 3D 
projection used. 3b) Localization results for the original minimum norm 
inverse (MNINV). 3c) Localization results for the transformed minimum 
norm solution (TMNINV). Note how the original minimum norm incorrectly 
attribute striate cortex activation to extrastriate visual areas. 

 
Importantly, this example is only illustrative and does not 

imply that all possible combinations of simultaneously active 
sources will be localized with the same accuracy. 
 

IV. DISCUSSION 
One important point about both the total or partial inversion of 
the resolution matrix deserves further discussion. Specifically, 
these procedures almost always transform the inverse matrix 
in a quasi-inverse manner, in the sense that the original system 
of equations (2) is no longer solved in the identity. Rather than 
being disadvantageous, this feature – common to all the 
Backus and Gilbert type of solutions (e.g. Beamformers and 
WROP) – seems to be critical for the success of the inverse 
solution. This separation from the data results in a robust 
solution that might produce reliable results in the presence of 
noise. In fact, our experience in the analysis of real data 
indicates that the updated inverse matrices obtained by partial 
inversion of (4) are more robust than inverse matrices obtained 
by regularization of problem (2). One could thus consider this 
new approximate inverse as a new type of regularized solution 
of problem (2). In fact, regularization of problem (2) is just 
another way to separate your inverse from the original system 
of equations.  
 
This link with regularization methods suggests a clear 
alternative to select the perturbation matrix in the presence of 
noise. Representing this perturbation as the product of a 
diagonal matrix and an unknown factor, i.e. D Wα= , any of 
the standard methods suggested to compute the regularization 
parameter α  (e.g., [11]) could be applied. The diagonal 
matrix W can be set to the identity or to a different value 
according to some available a priori information, e.g., scaled 
version of the diagonal of the resolution matrix.      
 
While the idea of inverting the resolution matrix seems to be 
new, this communication is by no means an exhaustive 
demonstration of the different inversion strategies that can be 
used. However, the following theoretical case is worth 
mentioning. When G is the Moore Penrose inverse of L (as 
the example developed in the previous section), the Moore 
Penrose inversion of R GL=  will produce the same inverse 
matrix and therefore no update. In other words, there are cases 
where an approximate inverse can perform better than a 
theoretical one. 
 
 
To illustrate the method, we considered here the application to 
the linear neurolectromagnetic inverse problem. However, the 
procedures proposed here are equally valid for any inverse 
problem with a resolution operator associated to it. 
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