Hindawi Publishing Corporation

Computational and Mathematical Methods in Medicine
Volume 2015, Article ID 801037, 8 pages
http://dx.doi.org/10.1155/2015/801037

Research Article

Hindawi

Flectrical Neuroimaging with Irrotational Sources

Rolando Grave de Peralta Menendez! and Sara Gonzalez Andino™?

'Electrical Neuroimaging Group, 18 rue Albert Gos, 1206 Geneva, Switzerland
Neural Microcircuitry Lab, Ecole Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland

Correspondence should be addressed to Rolando Grave de Peralta Menendez; rolando.grave@electrical-neuroimaging.ch

Received 15 December 2014; Accepted 30 April 2015

Academic Editor: Bonsu Mensah Osei

Copyright © 2015 R. Grave de Peralta Menendez and S. Gonzalez Andino. This is an open access article distributed under the
Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided
the original work is properly cited.

This paper discusses theoretical aspects of the modeling of the sources of the EEG (i.e., the bioelectromagnetic inverse problem or
source localization problem). Using the Helmholtz decomposition (HD) of the current density vector (CDV) of the primary current
into an irrotational (I) and a solenoidal (S) part we show that only the irrotational part can contribute to the EEG measurements. In
particular we present for the first time the HD of a dipole and of a pure irrotational source. We show that, for both kinds of sources,
I extends all over the space independently of whether the source is spatially concentrated (as the dipole) or not. However, the
divergence remains confined to a region coinciding with the expected location of the sources, confirming that it is the divergence
rather than the CDV that really defines the spatial extension of the generators, from where it follows that an irrotational source
model (ELECTRA) is always physiologically meaningful as long as the divergence remains confined to the brain. Finally we
show that the irrotational source model remains valid for the most general electrodynamics model of the EEG in inhomogeneous

anisotropic dispersive media and thus far beyond the (quasi) static approximation.

1. Introduction

The irrotational source model was explicitly proposed as a
biophysically constrained model for the EEG in [1, 2]. It
simply reflects the physical fact that EEG (potential) measure-
ments convey no information about solenoidal sources. On
this basis, we stated the inverse bioelectromagnetic problem
solely in terms of the irrotational part of the currents and
further showed that the resulting inverse problem can be
reduced to the determination of potentials within the brain
(ELECTRA).

While the irrotational source model is a rather trivial
consequence of basic textbook results, it can, nevertheless,
lead to an apparent contradiction when we try to place it
within the context of EEG models. The basic problem arises
because we intuitively expect the generators (i.e., the neural
currents) to be confined to the brain volume. Yet, irrotational
currents are different from zero whenever the conductivity
is different from zero. Consequently, the irrotational sources
are not confined to the gray cortical matter but rather extend
into tissues where no primary currents are expected as, for
example, white matter, bone, or the cerebrospinal fluid. We
will here show that this observation is not in contradiction

with the physical and physiological validity of the irrotational
source model (ISM) of ELECTRA. In fact, we will formally
show that the spatial extent of the generators is defined by its
divergence rather than by the spatial extent of its irrotational
component. We will also show that the divergence of the
irrotational component of focal (dipolar) sources remains
confined to the dipole center while the divergence of the
irrotational component of extended sources confines itself
to the brain region. This observation helps to understand
the measure we should minimize within inverse problems to
restrict the spatial extent of biological sources.

To formally introduce the problem let us start with the
following example fully justified by results in [3]. Let us
consider a region B of the 3D space and a function p(r)
with continuous first order partial derivatives inside B and
continuous on the closure of B (i.e., the union of B and its
frontier). Then, we can define the two functions V(r) and J(r)
as follows:

V(r) = L JB &dp

4l r—pl a)
J(x) =VV (r).
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Noting that the derivatives of V' can be computed by differ-
entiation under the integral sign with respect to variable r,
it results that J(r) is, by construction, irrotational and con-
tinuous throughout the 3D space (R*) and with continuous
partial derivatives inside B.

If we interpret region B as the brain in an infinite and
homogeneous medium with constant conductivity o (e.g.,
unitary) conductivity, then we have an irrotational current
source density vector J(r) defined and derivable everywhere
in the 3D space and generating potential V(r) which solves
the mathematical problem of the EEG (i.e., Poisson equation
with Dirichlet boundary conditions and ¢ = 1), as can
be verified using identity (A.3) and the symmetry of the
delta function (B.2) described in the Appendices A and B,
respectively:

5 p(r) reB
V(oW (1) =VV()=V-J(r) = 2)
0 r¢ B.

Equations (1) provide a simple example of a current source
density vector which is by construction irrotational since it
is defined as the gradient of a voltage generated by a phys-
ically plausible charge density p(r). Clearly, the irrotational
current density vector J(r) differs from zero whenever the
conductivity is different from zero; that is, it can extend
outside the region B (i.e., “beyond the brain”). This may cast
doubts on the physiological interpretability of the irrotational
source model. In this paper we discuss this issue using some
formal and/or intuitive arguments based on the Helmholtz
decomposition of two source models: a dipole and a pure
irrotational source.

In particular, we will demonstrate that, as suggested by
(2), it is the divergence of J that must be confined to (i.e.,
different from zero only in) the brain region B and not J itself
and that it is therefore the divergence of the current which
constitutes the appropriate measure of the spatial extent of the
generators, providing an interesting biophysical constraint,
never used thus far, for the solution of the bioelectromagnetic
inverse problem.

The paper is structured as follows: In Section 2 we briefly
recall the Helmholtz decomposition (HD) as the main tool
to analyze the current density vector (CDV) of the primary
current and Dirac’s delta function to represent “the current
density vector of the dipole” (which, for simplicity we will
call just “the dipole”). We will provide, for the first time,
the formal derivation of the HD of the dipole and of a pure
irrotational source. After noting that both, the irrotational
and the solenoidal part, might extend all over the space even
for concentrated sources like the dipole, we show that, for
both sources, it is indeed the divergence of the irrotational
part (which is the same as the divergence of the CDV) that
remains confined to a region, confirming our initial guess
based on (2). We show also that the dipole is solenoidal
and irrotational everywhere in the 3D space except at its
location and that there is no need for a pure solenoidal part
to compensate for a pure irrotational part exiting the region
where the primary current is expected to be confined to. After
clarifying the physiological soundness of the irrotational
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source model (ISM) we will, in Section 3, show that the ISM
remains valid far beyond the (quasi) static approximation
as the only possible source of electrophysiological measure-
ments in inhomogeneous, anisotropic, and dispersive media.
To our knowledge, this is the first time these results are
presented in the literature.

Unless otherwise stated, we will denote vectors and
matrices by bold uppercase letters except the spatial variables
that will be denoted by bold lowercase letters (e.g., r or q) or
the material parameters that will be denoted by ¢, o, and p.
In standard equations where there is no place for confusion
the dependence with the spatial variable will be omitted; that
is, instead of V, or V(r) or A(r) we will write just V, V, or A.
For further details about the notation and conventions see the
Appendices.

2. The Helmholtz Decomposition of the Dipole
and the Irrotational Source

2.1. Helmholtz Decomposition Theorem. (Also called the fun-
damental theorem of vector calculus): let B ¢ R> be a
regular domain in the sense that its boundary is the union
of a finite number of smooth surfaces (i.e., C' surfaces).
Then any vector field J(r) continuous in the closure of B and
with continuous partial derivatives inside B can be uniquely
expressed as the sum of an irrotational field and a solenoidal
field.

Typically stated for isotropic media it has been also
demonstrated for anisotropic media [4]. More relevant for
this paper, it has been also extended [5] to infinite domains
and/or to the case when the field J(r) has a finite number
of isolated singular points and without any condition on the
growth of J(r) when r — o©o. Here we make use of the
decomposition for the infinite and homogeneous medium
sometimes called the free space, that is, R3.

The existence of HD is closely related to the solution of
Poisson’s equation (A.4). That is, the decomposition of the
vector field J(r) will always be possible if there exists a field
C(r) with continuous second order derivatives in B such that

J(r) = V’C(r). 3)
In effect using (A.2) we can rewrite J(r) as

J(r) = V(V-C(r)) - Vx VxC(r)

(4)

=V (()+VxA(r), withV-A=0.

To achieve the decomposition we take alternatively the
divergence and the rotor of (4) to obtain Poisson’s equation
for ¢ (using V-V = V%) and A (using (A.2) and V- A = 0),
respectively, that, solved according to (A.4), yields

<P(f)——4nL r - pl @
vV, xJ(p) ®
_ L%
A(r)—4ﬂJB rp] d

This decomposition is unique up to an additive constant
[6]. The uniqueness of this decomposition follows from
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the uniqueness of the solution to Poisson equation with
Neumann boundary conditions.

In the electrodynamics literature it is usual to associate
@ with the scalar potential and A with the vector potential.
Consequently, Helmholtz decomposition lends itself to an
interpretation of electrodynamics fields as related to spatial
derivatives of potentials. However, a formal derivation of the
expression for the solenoidal and irrotational components
of different source models in terms of the delta formalism
is missing from the literature. We provide next a formal
derivation of the irrotational and solenoidal components
of the fields linked to two sources of electrophysiological
interest: the dipole and an extended pure irrotational CDV.
This derivation serves to clarify several aspects linked to
the spatial extent of a CDV, its solenoidal and irrotational
components, and the link they have with the generators of
the electromagnetic fields.

2.2. The Dipole. Inlay terms a dipole at location q and dipolar
moment M corresponds to a CDV that is zero everywhere
except at point q where it takes the value of the dipolar
moment. This is intrinsically associated with the informal, yet
largely used, view of the Dirac’s delta function located at point
q as a function, in the classical sense, that is zero everywhere
except at q where “the mass” is concentrated (for the formal
definition see Appendix B); that is,

Ja(r) =Mé (r,q). (6)

The informal interpretation of § intuitively suggests (but does
not prove) that the dipole (6) is irrotational and solenoidal
everywhere where 0 is zero (i.e., everywhere except at q). Yet,
a more mathematically oriented reader might find difficulties
in accepting results derived from the delta which is only
defined in the sense of distributions. Consequently, we will
use a more rigorous treatment of the §, based on the definition
and properties described in Appendix B to demonstrate this
fact and derive the irrotational and solenoidal components of
the dipole.

We remind the reader that in this paper the term “the
dipole” designates “the current density vector of the dipole”
as expressed by (6).

Since the dipole has a single singular point (at q) and
behaves like the null function in every domain not containing
the point q we can say that it satisfies all the necessary
conditions for the computation for the HD.

2.3. Decomposition of the Dipole. In the following we assume
that we have a region B (e.g., the brain), inside the infinite and
homogeneous space R*, where the current density vector of
the primary currents is confined to and therefore containing,
in our case, the point q where the dipole is located. Note that,
in that case, integrals over R> are equivalent to integrals over
B. Then we can compute the Helmholtz decomposition of the

dipole in (6) using expressions (5). For the irrotational part
we have (since M is independent of p)

1 [ V,-Mé(p.q
=—— | ———d
¢ (r) 47 JB [r - p|
V.6 (p,
- M hoe P9, %
(a5 4w Jg |r—p|
(B.3) 4711 T\ |r-q|
1 r-q
=—M- .
)= P (8)

Taking the gradient of (8) yields the irrotational part of the
dipole I;(r):

3M-(r—q)

1
L= o 7

Ir-q

|3 M_(r_CI)

Given that in electrostatics the electric field is the gradient
of the electrostatic potential, that is, E(r) = —-VV/(r), it is not
surprising that ¢(r) and —I(r) are, respectively, the potential
V (r) and the electric field E(r) generated at point r by a dipole
at location q.

Equation (9) tells us that the irrotational component of a
dipolar source has a well defined physical interpretation in
terms of the electric field it produces. Obviously, both the
electrostatic potential and the electric field extend all along
the space and well beyond the point q where the dipole is
located.

Note that the divergence of I,;(r) is the Laplacian of
potential ¢(r) in (8), and direct calculation shows that this
Laplacian is zero for r # q and becomes indefinite at r = q
where the dipole is placed. Thus, independently of the way we
interpret what happens at r = q (e.g., the infinite Laplacian
field predicted by the informal meaning of the §), it is clear
that the potential (8) is generated by what happens inside
the region R = {q} < B. However, the divergence of the
irrotational part of the dipole (9) is confined, as the dipole
itself (6), to this very same region R = {q} where the primary
current is known to be concentrated. This divergence, also
known as the Current Source Density (CSD), coincides with
the sources and sinks of the field and is traditionally estimated
in neuroscience, under the quasi static approximation, by the
Laplacian of the electrostatic potential. Thus, since the spatial
extent of the dipolar generator is given by the divergence of
its irrotational part we suggest that this is the quantity to be
minimized in inverse solutions to retrieve focal sources.

In general the solenoidal part can be obtained by sub-
traction of the irrotational part (9) to the vector field we are
decomposing, that is, (6) in our case. Here we compute it



using the definition (5) and considering that M is indepen-
dent of p; that is,

V, x M6 (p,
Amzijp (P, 9)
4 ) Ir — pl
v,94 (p,
- ML [ R, (10)
(a5 4w Jgp |r—p|
(B.3) 471 T\ |r - q|
1 r-q
A(r)=—Mx .
(r) o i (11)

Taking the rotor of (11) we obtain the solenoidal part of the
dipole S;(r) as

1 [3M~(r—q)(r_

S, (r) =
a () 4rlr-q | |r-q

@—M]. (12)

Once again, as expected from magnetostatics, the vector
potential (11) and its rotor (12) coincide with the magnetic
field and the magnetic flux of a dipole (with unitary magnetic
permeability).

We would like to remark that while the results of this
section are, a posteriori (i.e., once we see them), not very
surprising but expected for static fields, their mathematical
proof using the Helmholtz decomposition of the dipole
and/or the delta calculus is missing from the literature. The
formal treatment presented here helps to clarify aspects of the
source itself within the framework of the HD. All the formulas
in this section were verified with the symbolic Matlab toolbox
except for the integrals (7) and (10) that were computed
analytically using formulae in Appendix B.

In short, results in this section show that from the
decomposition of dipole as J,;(r) = MJ(r,q) = I;(r) + S,(r)
it follows that

(D1) theoretically, the only part of a dipole able to generate
electric potentials (7)-(8) is I,(r); note that ¢(r),
defined by (7), is zero for divergenceless fields and
the solenoidal component fulfills V - S;(r) = 0 as the
divergence of a rotor is always zero;

(D2) while the dipole denotes a source confined to location
q, the irrotational component I ;(r) and the solenoidal
component S;(r) extend all over the region B and
beyond it to all those parts of the space where the
conductivity and permeability are different from zero
(u = 0 = 1in our case);

(D3) the spatial extent of a dipolar primary current is
defined by the divergence of its irrotational part;

(D4) even if we computed the irrotational and the
solenoidal parts separately using the defining equa-
tions (5) the results still satisfy that I,(r) + S;(r) = 0
for all r # q; that is, as expected from the intuitive
definition of a dipole, the current density vector of
a dipole J,(r) is really zero for all r # q; as a
consequence if r # q, we have I;(r) = -S,(r) and
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then both parts are, up to a sign change, the gradient
of the harmonic function ¢(r).

In summary, the current dipole is electrically visible because
it “contains” a distributed irrotational source I,(r) propor-
tional to its electric field that, like the electric potential,
extends all over the space. Nevertheless the divergence of
I,(r) (i.e., exactly the same as the divergence of the dipole (6))
remains confined to the region R = {q}.

2.4. Decomposition of a Pure Irrotational Source. The analysis
of the irrotational and solenoidal components of a distributed
irrotational current might be also of some neurophysiological
interest. Indeed, any current expressed as the gradient of
another scalar field (e.g., ionic concentrations or purely
ohmic currents) is necessarily irrotational. Therefore, in this
section we compute the Helmholtz decomposition of the pure
(because it contains no solenoidal part) irrotational source of
(1). This function satisfies all necessary conditions of the HD
theorem since it is continuous and has continuous derivatives
all over the space. Then, since the rotor of a gradient is always
zero the use of (5) yields

o NJ® 1 e

¢ () = 471,[913 [r - pl d @) 4nJB|r—p|d
_ (13)
(T)V(r))

A(r)=0.

Thus, the irrotational component of a distributed irrotational
current coincides with the original current density vector (1).
As expected, the solenoidal part is zero everywhere; that is,
J(r) = I;(r) + S;(r) with

L) =VV(r)=](r),
(14)
S;(r)=0.

From this decomposition it follows that

(I1) as for the dipole, a distributed irrotational source con-
tributes to the EEG measurements via its irrotational
part I,(r);

(I2) as for the dipole, the irrotational component I;(r)
extends all over the space even if contrarily to the
dipolar case the current density vector J(r) is not
confined to any region;

(I3) however, according to (2), the divergence of the
irrotational part V - L(r) remains confined to the
expected region B (i.e., the brain) containing the
generators;

(14) since the current density vector is not (a priori) zero
anywhere, the irrotational components I;(r) and S;(r)
are not canceling each other at any place; however,
I;(r) changes qualitatively from the gradient of a
nonharmonic function (V(r)) inside B to the gradient
of a harmonic function outside B (the same V (r)!).
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In summary, the irrotational part of a pure irrotational
current source density vector is the same current density
vector and extends all over the space. However, as for the
dipole, the divergence of I;(r) remains confined to the region
B (i.e., the brain) expected to contain the generators.

3. The Irrotational Source Model in
Complex Media

The use of the quasi static approximation in the solution of
the EEG inverse problem has been motivated by the range
of frequencies of the EEG and the electrical properties of the
media [7]. On this basis we might wonder if the ISM initially
introduced for the (quasi) static approximation is also com-
patible with a more complete electrodynamics modeling of
the EEG within more complex media. In the following we dis-
cuss the applicability of the ISM, considering both physically
plausible models and mathematically treatable problems.
Since we are mainly interested in the reconstruction of the
sources from the EEG we will consider the cases where the
electric and magnetic fields can be separated into indepen-
dent equations. Separation into independent equations is not
possible when both the magnetic permeability ¢ and the
dielectric permittivity e are tensors. Fortunately, this situation
“is not a case of primary importance” [8]. Then, following the
tradition in neuroscience, we will consider the case where
a magnetic permeability is a simple scalar independent of
the space while the dielectric properties are expressed by
tensors. Even if the models presented here are far away from
the customary quasistatic EEG analysis we would note that
this section is not to advocate a given mathematical model
(like waves versus statics or any others) but just to show
that the irrotational source model is not a simple conse-
quence of, and therefore it is not limited to, the quasistatic
approximation.

To start we consider an inhomogeneous (i.e., ¢ and o
depend on the location), anisotropic (i.e., € and o change with
the spatial directions), and dispersive (i.e., e and o depend on
frequency) lossy dielectric medium. In this case, € and o are
represented by 3 x 3 square matrices (rank two tensors) and
p is a simple real number (scalar).

The conductivity and the permittivity tensors (or scalars)
can be combined to obtain the complex permittivity as
follows:

g (rw) = s(r,w)—ja(r’w) =¢e(rw)+ M
w Jw (15)
with j = V-1.

On the other hand, it has been noticed [8] that Maxwell’s
equations are redundant in the sense that, from an axiomatic
viewpoint, it is sufficient to consider the two rotor Maxwell
equations together with the charge continuity equation to
tully describe the behavior of the fields. Directly writing the
two rotor Maxwell equations in the frequency domain to

account for the presence of dispersion (frequency varying
permittivity) we obtain

VxH (r,w) = jwe (r,w)-E (r,w) +0 (r,w)
“E(r,w) +] (r,w) (16)

= jwe, (r,w) B (5, w) +] (1, w)
VxE (r,w) = - jugH (r,w), 17)

where ¢, and ¢ are 3 x 3 matrices (rank two tensors) with
elements that depend on frequency w and space r, y is a
scalar, and J denotes the unknown primary current density
vector that produces the electric field and thus the EEG
measurements. Note that the term jw appears in the right-
hand term of (16) and (17) because differentiation in the time
domain corresponds to multiplication by jw in the frequency
domain. This term reflects the fact that, on this derivation,
temporal variations of the fields are not anymore neglected;
that is, the quasistatic approximation has been dropped.

Since B = uH is a solenoidal field (i.e., V- B = 0) then
there is a field A such that B = V x A. Thus, we can introduce
the magnetic vector potential A to represent the fields H and
Eas

H (r,w) = leA(r,w)
U
E (r,w) (18)

= ;sc_l (rLw) [VXxVxA (r,w) -y (r,w)],
Jwp
where the expression for E is obtained taking the rotor of H
in (18) and equating it to the rotor of H in (14).
Substituting H from (18) into (17) and equating it to the
rotor of E (18) we conclude that A must fulfill

V X [sgl (r,w)VxVxA(r,w)— waA (r,w)
(19)
- /,tec_ll (r, w)] =0.

Since V x Z = 0 implies that there is a function ¢ and a
constant k such that Z = kVe¢, we can then introduce the
scalar function ¢ (with constant k = —jwyu conveniently
selected for the matter of dimensions but independent of the
spatial variable r) fulfilling

Vx VXA (r,w)— wz‘usc (r,w)A(r,w) - yJ (r,w) 20)
= — juwue, (r,w) Vo (r,w) .

Taking the divergence on both sides of (20) and arranging
terms leads to

V- [e, (r,w) Vo (r,w)] + jwV - [e, (r,w) A (r, w)]

V. J(rw) (21
-

Equation (21) already shows that the only part of the
unknown current density vector J that contributes to the



potential ¢ (i.e., to the EEG measurements) is the irrotational
part of J. Indeed, from the Helmholtz decomposition of the
primary current, J(r) = I(r)+S(r) with V-S(r) = 0 follows that
V-J(r) = V- [I(r) + S(r)] = V-I(r). Therefore, the right-hand
term (the “source term”) in (21) will always be (irrespective
of the shape of ¢.) identical (up to the factor 1/jw) to the
divergence of the irrotational component of J.

Equation (21) is not directly solvable for the arbitrary
heterogeneous, anisotropic, and dispersive media considered
thus far unless the fields are restricted to plane waves of a
given polarization and the media are restricted to certain
classes (e.g., birefringent) [8]. Yet, (21) can be simplified
for simpler media such as an isotropic, homogeneous, and
dispersive media where ¢ and o reduce to single numbers
depending only on the frequency and independent of the spa-
tial direction or the spatial location. In this case the problem
reduces to the nonhomogeneous Helmholtz equation in the
frequency domain (equivalent to the wave equation on the
time domain):

2 2 v
Vipr (we) o= 20 (22)
To obtain (22) we have used the Lorenz gauge V-A = — juwue, @
where the wave number is defined as the first quadrant
root of k¥ = —w’ue, [8]. The necessity of fixing a gauge
in electrodynamics arises from the nonunique definition
of the scalar and vector potentials. Even if this discussion
extends beyond the scope of this paper we consider it
worth mentioning that the Lorenz Gauge (contrarily to the
Coulomb gauge) naturally leads to wave equations for both
the scalar and vector potentials. Consequently, within the
Lorenz Gauge, not only the fields but also the potentials
propagate at finite speeds in agreement with the causality
principle.

In summary, from (21) or its simplified version (22), it is
seen that the source term (right-hand term) that generates
the scalar potential within complex materials, once the qua-
sistatic approximation is dropped, is given by the divergence
of the unknown J(r). Since the divergence of a solenoidal
source is always zero, only irrotational currents can be source
of the scalar potential.

4. Discussion

Section 2 presents the formal derivation of the irrotational
and solenoidal parts obtained from HD for two different
source models: a concentrated (dipolar) source and a dis-
tributed (purely irrotational) source. A posteriori, that is,
after realizing the physical meaning of the irrotational and
solenoidal components in terms of the electric field and
magnetic flux, some of the derived conclusions might appear
trivial. Yet, from the perspective of source modeling, they are
not. Let us see why.

First, most of the apparently trivial interpretations of the
results given here are based on treating the delta function (i.e.,
the dipole) as a function in the classical sense. This is formally
incorrect since the delta function is not defined as a function
of the space but only for integrals that include or not the
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location of the delta. In other words, an equality containing
the delta function is to be interpreted only after integrating
both terms according to the definition and properties of the
delta function (e.g., Appendix B) resulting in an expression
interpretable in the classical sense. This paper provides the
irrotational and solenoidal parts of the dipole using later
formalism.

Second, the adopted formalism seems to be the only way
to clarify the apparent contradiction due to the difference
between the spatial extent (i.e., the region where it is different
from zero) of the primary current, the spatial extent of its
irrotational part, and the spatial extent of the generators
of the electric (i.e., EEG) data. In effect, independently of
the spatial extension of an arbitrary primary current, its
irrotational part extends as much as the potential it generates.
However the solenoidal part can exist (e.g., the dipole) or not
(e.g., the irrotational source) and extend all over the space
(e.g., the dipole) while the generators (i.e., the divergence
of the primary current) might be confined to a completely
different region (e.g., the irrotational source). The apparent
contradiction arises from using the wrong definition of the
generators. Effectively, since the generator of the EEG is not
the current density vector J(r) nor its irrotational part but
its divergence, the divergence V - J(r) is the only element
that correctly defines the spatial extension of the generators.
Interestingly, this result holds true (see (21) and (22)) well
beyond the quasistatic approximation and within extremely
complex physical media as the source term is always given
by the divergence V - J(r). Note that in such complex media
and beyond quasistatic limits, computing the Laplacian of the
potential is not sufficient to determine the generator extent
(the divergence V - J(r)) since, in the more general case,
the divergence is dependent on the vector potential (21) or
on temporal derivatives of the potential (22). Consequently,
this result is relevant not only for inverse modeling but for
experimental and clinical neuroscience as well. For inverse
modeling this result immediately provides an appropriate
measure to optimize in order to arrive to more or less
focal solutions. Within experimental neuroscience this result
indicates that the association of the Laplacian estimated from
multielectrode arrays to the sources and sinks (also called
the CSD) of the field might be misleading, in particular,
if the underlying geometry is complex and the quasistatic
approximation is not valid. In clinical terms, this result
might have important implications on the studies that try to
define the extension of the epileptogenic area as needed for a
supervised surgical resection.

From the decomposition of the dipole we observe that
all over the space there is a solenoidal part that cancels out
the irrotational part. However the decomposition of the pure
irrotational source shows that this is not really a need but
a particularity of the dipole. In general, for all electrically
visible sources (i.e., that produces EEG), whenever the pri-
mary current density vector is zero, there will be a solenoidal
part to cancel out the irrotational part. For the sake of the
physical interpretation, in the analysis presented here we have
excluded the dipole location q. However, we should mention
that there are straightforward ways to compute “the value”
of the irrotational part and the solenoidal part at this point.
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Unfortunately these values lack a physical interpretation since
they are just fractions (i.e., 1/3 and 2/3) of the dipole CDV (6).
In simple terms this corresponds to decomposing the delta as
a combination of fractions of the delta.

Section 3 shows that the irrotational source model (ISM)
is also valid for homogeneous isotropic dispersive media. In
fact, since the assumption of homogeneity was only used
after (21), it results from (21) that the ISM is also compatible
with inhomogeneous anisotropic dispersive media, which
corresponds to one of the more complex media we can figure
out. Indeed, (21) and (22) show that the only part of the
primary current that contributes to the scalar potential, in
complex materials and beyond quasistatic limit, is given by
the divergence of the primary current. Since the solenoidal
component of a current is by definition divergenceless it
cannot behave as a source of the scalar potential (e.g.,
the EEG) no matter how complex the media is. Therefore,
Section 3 shows that the ISM is completely independent
of the quasistatic assumptions and is indeed valid within
a more general electrodynamics formulation of the EEG
inverse problem where neural tissue is modeled with its
full complexity (i.e., as an inhomogeneous anisotropic and
dispersive media).

5. Conclusion

In this paper we have discussed the sources of the EEG
making emphasis on the irrotational source model (ISM)
originally proposed in [1] as a physically plausible model for
EEG sources. We have used the Helmholtz decomposition
to show that the EEG can only be generated by irrotational
sources. In particular we provide, for the first time, the
decomposition of the dipole (6) and a pure irrotational source
(1) into an irrotational and a solenoidal part to conclude
that while the irrotational part extends all over the space
(i.e., outside the region expected to contain the primary
current), the solenoidal part may (or not) have the same
extension. Outside that region and within the quasistatic
limits, the irrotational part is the gradient of a harmonic
function. Importantly, even if both parts extend (or not) all
over the space, only the divergence of the irrotational part,
corresponding to the generators of the EEG, remains always
confined to the expected region of the primary currents.
Thus, it is the only element that can be used to reliably
estimate the extension of the generators. Consequently, the
irrotational source model is physiologically meaningful as
long as its divergence remains confined to the brain volume.

We have also shown that the ISM is compatible with
more general electrodynamics models of the EEG including
inhomogeneous anisotropic dispersive media and thus that it
is not limited to the quasistatic approximation.

In summary, from a rigorous point of view, the irro-
tational source model of ELECTRA corresponds to the
estimation of the irrotational part of the unknown primary
current J from scalp EEG data. This does not mean that
sources inside the brain are irrotational. It simply means that
EEG measurements are insensitive to the solenoidal part of
the primary current. This might look as a limitation but it is
not. Every nonsilent current contains an irrotational part that

makes it electrically visible. Thus, it seems that pure vortex
sources are more likely to exist in the mathematical universe
than in a real brain. In conclusion, the irrotational source
model not only is an efficient way to simplify the solution
of Maxwell equations, when only electrical data is available,
by reducing the complexity of the inverse problem from the
estimation of a vector field to the estimation of a scalar field,
but also is compatible with the different complex media (e.g.,
inhomogeneous anisotropic), with a more complete electro-
dynamics approach (e.g., wave or Helmholtz equations) and
with the diverse electrophysiological recording scales.

Appendices

Notations examples and definitions for the mathematical
elements used in the paper and the appendices are the
following:

(i) Points in 3D Euclidian space R’ arer = {r,, Ty r .
(i) Vector fields in R> are A(r) = {a (), ay(r),az(r)}t.

(iii) Scalar fields in R are o(r).

(iv) Nabla (or Del) symbol is V = {9/0x,0/0dy, 9/0z} such
that V- A, V x A, and V¢ denote the divergence, the
rotor (or curl), and the gradient operators acting on
vector or scalar functions, respectively. The “” and

“x” denote the scalar (dot) and vector (cross) product

of vectors and V2A or V¢ denote the Laplacian of a

vector or scalar field.

(v) A vector field A with V - A = 0 is called solenoidal or
divergence-free. A vector field with Vx A = 0is called
irrotational or curl-free.

A. Some Vector Identities Used in This Paper

Given vectors A, B, and C, then
AxBxC=B(A-C)-(A-B)C. (A1)

Taking A = Vand B = V and C as a 3D vector field we have
a symbolic derivation (more mnemonic than maths) of the

Laplacian of C:
VxVxC=V(V-C)-VC. (A.2)

In particular for the Laplacian of the Green function of the
infinite medium we have

Vl,2< ! >:—4n6(r,p).
Ir - pl

The solution of Poisson’s equation for the free space, that is,
the infinite medium without boundaries, J(r) = V2C(r), is
(idem for scalar fields)

(A.3)

cm:-ij I® 4, (A.4)
4m Jyw |r - p|
If M is a constant vector, then
V- (Mg (r)) = M- Vo (r)
(A.5)

Vx (Mg (r) =-Vx(p@r)M)=-MxVe(r).



B. The Delta Function

Let ¢(r) be a scalar function with compact support (i.e.,
different from zero in a closed and bounded set of points B)
and the primed (p'(r), the result of first order differentiation
operations (e.g., gradient). Note that since § behaves as a
compactly supported function, similar statements are valid
for not compactly supported functions ¢, as suggested by
(B.1), where ¢ = 1 extends all over the space. Then, we denote
by 8(r,q) or 6(r — q) the generalized function (sometimes
also called functional, distribution, or measure) fulfilling the
following equations for any region B ¢ R’ containing the
point q:

J d(r,q)dr = J §(r,q)dr=1 (B.1)
R3 B

J ¢(r)6(r,q)dr=J ¢ ()0 (r,q)dr
Rn3 B

(B2)
- | pwo@ndr-9@
J ¢ ()5 (r,q)dr:J 6 ()8 (r,q)dr
R3 B
- g smaar B
B

=-¢'(q).
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