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a b s t r a c t

Thought-controlled neuroprostheses could allow paralyzed patients to interact with the external world
using brain waves. Thus far, the fastest and more accurate control of neuroprostheses is achieved through
direct recordings of neural activity [Nicolelis, M.A., 2001. Actions from thoughts. Nature 409, 403–407;
Donoghue, J.P., 2002. Connecting cortex to machines: recent advances in brain interfaces. Nat. Neurosci.
5 (Suppl.), 1085–1088]. However, invasive recordings have inherent medical risks. Here we discuss some
approaches that could enhance the speed and accuracy of non-invasive devices, namely, (1) enlarging the
spectral analysis to include higher frequency oscillations, able to transmit substantial information over
short analysis windows; (2) using spectral analysis procedures that minimize the variance of the esti-
mates; and (3) transforming EEG recorded activity into local field potential estimates (eLFP). Theoretical
and experimental arguments are used to explain why it is erroneous to think that scalp EEG cannot sense
high frequency oscillations and how this might hinders further developments. We further illustrate how
non-invasive eLFPs derived from the scalp-recorded electroencephalogram (EEG) can be combined with
robust, broad band spectral analysis to accurately detect (off-line) the laterality of upcoming hand move-
ments. Interestingly, the use of pattern recognition to select the brain voxels differentially engaged by the
explored tasks leads to sound neural activation images. Consequently, our results indicate that both
research lines, i.e., neuroprosthetics and electrical neuroimaging, might effectively benefit from their
mutual interaction.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In recent years we have witnessed impressive progresses in
brain machine interfaces (BMI), i.e., controlling computers or other
devices by brain waves. Using electrodes or tetrodes directly im-
planted into the brains, monkeys or severely paralyzed patients
(Nicolelis, 2001; Craelius, 2002; Taylor et al., 2002) have been able
to control mechanical devices or computers. However, rendering
BMI useful to a larger population of patients implies reducing the
medical risks inherent to direct brain implants as well as ensuring
their long-term reliability.

An inexpensive and non-invasive alternative to long-term brain
implants is the use of scalp EEG recordings. Still, EEG based BMI
systems are far more inaccurate, slower and require long training
periods before patients or normal volunteers learn to control their
brain rhythms. This is because EEG signals represent the noisy

overlap of activity arising in diverse brain regions. Consequently,
temporal (and thus spectral) features specific to diverse parallel
processes arising in different brain areas are mixed on the same
signal.

Recently, it has been shown that cortical recordings (ECoG)
might provide a less invasive alternative to tetrodes based im-
plants (Leuthardt et al., 2004). While still invasive, the temporal
stability of ECoG signals seems to be easier to obtain. ECoG based
neuroprosthetics provide accuracies superior to EEG based devices
but still lower than tetrodes. Apparently, part of the ECoG success
is based on the use of spectral features extracted from the range of
oscillations (Leuthardt et al., 2004; Rickert et al., 2005) considered
as non-measurable by scalp EEG (Schwartz et al., 2006). In addi-
tion, the spatial resolution of ECoG signals is finer than scalp mea-
sured signals that are spatially blurred by interfaces separating the
cortex from the scalp, e.g., the skull, skin, and the cerebro-spinal
fluids.

Here we show that there are techniques and approaches that
can be used to close the gap between ECoG signals and EEG and
therefore that there is potential for improvement in non-invasive
neuroprosthetics. Recent developments in electrical neuroimaging

0928-4257/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jphysparis.2009.07.004

* Corresponding author. Address: Geneva University Hospital HUG, Rue Gabrielle
Perret-Gentil 4, 1211 Geneva 14, Switzerland. Tel.: +41 223728323; fax: +41
223728333.

E-mail address: rolando.grave@hcuge.ch (R. Grave de Peralta).

Journal of Physiology - Paris 103 (2009) 324–332

Contents lists available at ScienceDirect

Journal of Physiology - Paris

journal homepage: www.elsevier .com/locate / jphyspar is



Author's personal copy

(Grave de Peralta Menendez et al., 2000, 2004) allow the transfor-
mation of scalp recorded EEGs into estimates of local field poten-
tials (eLFP). Transformation of EEG data into intracranial
potentials allows us to unravel scalp signals, attributing to each
brain area an estimate of its own temporal (spectral) activity. Thus
non-invasively estimated LFP have the potential to be used as an
alternative to control neuroprosthetic devices if they prove to com-
pare in terms of speed and precision to ECoG signals (Mehring
et al., 2003).

Here, we start with a brief description of the physiological basis
of the different signals that can be used as control modalities in
neuroprosthetics to better establish their similarities and differ-
ences. A discussion on the possibilities of scalp EEG to sense very
high frequency oscillations and an introduction to the analysis
techniques that better allow their reliable estimation follows. The
main limitation of EEG signals, i.e., its low spatial resolution is pro-
posed to be, at least partially, overcome by the use of non-invasive
LFP estimation described in a separate section. Finally, the combi-
nation of techniques is illustrated in the analysis and classification
of executed hand movements to show that decoding of motor
intentions is possible using eLFP estimated from scalp EEG signals.
It is further illustrated that using pattern recognition for voxel
selection in electrical neuroimaging leads to reasonable activation
images proving that both research lines might benefit from mutual
interaction.

2. Methods

2.1. Different recording scales for neuroprosthetic control

Electrode technology for applied as well as basic neuroscience
applications has significantly improved over recent years. We are
today able to measure from a wide range spectrum of temporal fre-
quencies, from ‘‘resting” or standing (DC) up to several kHz. This
spectrum is commonly subdivided into two crude categories, near
field intracellular or extracellular measurements and far field
measurements.

Typical near-field extracellular measurements are performed by
amplifying the potential difference between the microelectrode tip
and a reference electrode located within a few millimeters. These
recordings are usually broken into two components by filtering:
the local field potential (LFP) corresponds to coherent high fre-
quency changes in membrane potential (<300 Hz) associated with
synaptic currents as well as other sources in cell aggregates, while
the even higher frequency signal (300–10 kHz) consists mostly of
multi-unit activity (MUA) resulting from action potentials (AP) in
nearby neurons. MUA and LFP represent signals with widely differ-
ent spatial extent: up to 100 lm for the single-unit signals, several
hundreds of microns for the multi-unit signals, and several milli-
meters for the LFP.

LFPs are thought to represent extracellularly-recorded voltage
fluctuations in the membrane potentials of a local neuronal popu-
lation. LFPs originate from excitatory and inhibitory postsynaptic
potentials (EPSP/IPSP), mainly as a result of action potential input.
Postsynaptic potentials propagate much farther in space than
MUA. Furthermore, because of their longer temporal duration EPSP
and IPSP have a much higher chance to occur in a temporally over-
lapping manner than do the brief action potentials. Finally, EPSPs
and IPSPs are displayed by many more neurons than are spikes be-
cause only a very small minority of neurons reaches the spike
threshold at any instant in time. For these reasons, the contribution
of action potentials to the local fields and especially to the scalp
EEG is assumed negligible (13).

Depending on the location and size of the recording and refer-
ence electrodes, field potentials integrate neural activity over a

range of spatial scales: from the intracortical local field potential
(LFP) to the intracranial electrocorticogram (ECoG) to the extracra-
nial electroencephalogram (EEG). Additionally, magnetic field
recordings can also be measured on the scalp using magnetoen-
cephalography (MEG). These far field electrical recordings are sim-
ilar to LFP in that they only contain significant low-frequency
components. However, due to the amplitude attenuation by the
skull and scalp and spatial filtering by volume-conduction in the
brain, the spatial resolution of these recordings is considerably
poorer than near-field recordings.

When dealing with neurophysiology in general and its concrete
application to neuroprosthetics it is very important to keep in
mind the differences between MUA and field potentials. While
field potentials mainly reflect input to an area and local processing
on it, MUA represent output from the area. Consequently, both
measures encode different aspects of neural activity. Field poten-
tials provide coarser although not necessarily less useful informa-
tion about local processing than MUA.

2.2. On high frequency oscillations and fast EEG based BCIs

Due to the spatial filtering by volume-conduction the spatial
resolution of EEG and MEG is poorer than that of near field record-
ings. Contrarily, to a widespread idea this does not imply that the
frequency resolution of these techniques is different. In particular,
it is erroneous to think that high frequency oscillations are not
measurable by the scalp EEG. Some authors claim (Schwartz
et al., 2006) that ‘‘. . . the large distance between the recording elec-
trode and the underlying cortex allows capacitive effects of the tis-
sue to shunt high-frequency currents more locally”. This assertion
is wrong from both theoretical and experimental grounds. Already
in 1957, Schwan and Kay showed that within biological tissues, the
capacitive component of tissue impedance is negligible for fre-
quencies below 1000 Hz. This experimental result is the basis of
the quasi-static approximation (Plonsey and Heppner, 1967) on
which all modeling of EEG and MEG relies upon. There is no solid
theoretical reason to claim that scalp EEG recordings contain no
spectral information above 70 Hz. What certainly holds true for
all continuously recorded signals, i.e., LFP, ECoG and EEG, is that
they exhibit a power-law frequency dependence with lower ampli-
tudes for the higher frequencies. Further experimental validation
to the absence of filtering effects by neural tissue comes from a re-
cent study from Logothetis et al. (2007). These authors investigated
the conductive properties of the gray matter in vivo concluding
that gray matter behaves as an ohmic conductor, i.e., they showed
that the cortex does not act as a frequency filter and does not im-
pose different constraints on the propagation of electric signals of
different temporal frequency. Notably, further results (Ikeda et al.,
2002; Murakami and Okada, 2006) sustain the view that spiking
activity might be detected from far field recordings of neural activ-
ity if enough synchronized across large enough populations. These
results open a new window into EEG and MEG analysis and sub-
stantially encourage the exploration of fast oscillations.

Research on non-invasive neuroprosthetics has focused on rela-
tively slow oscillatory activity (theta 4–8 Hz, alpha 8–12 Hz, beta
13–25 Hz and gamma 26–80 Hz). A pragmatic view of such oscilla-
tory phenomena will reveal that there is no physical time for such
oscillations to change, and therefore encode, information about
highly dynamic processes. For instances, information relayed from
one visual area to another only takes about 10 ms. If a particular
oscillation is to carry this information, several cycles must be com-
pleted within this time. Some simple numerical computations will
lead us to the conclusion that fast information encoding and trans-
mission is most likely based on neural oscillations that are above
100 Hz also called epsilon oscillations.
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Scalp EEG in newborns, in patients under anesthesia and in
sleeping subjects is characterized by highly rhythmic oscillatory
activity at low frequencies. On the other hand, the EEG of subjects
that are in a relaxed state with eyes closed is generally character-
ized by strong occipital alpha oscillations. Opening the eyes in-
duces a transition to a ‘‘more disorganized” less rhythmic state
dominated by fast activity. Also, motor cortical activation during
motor preparation and execution is related to the decrease of alpha
and beta EEG sensorimotor rhythms. An increase in the alpha and
beta rhythms occurs after movement termination. Intracortical
recordings in epileptic patients (Crone et al., 1998) show that there
is an inverse relationship between motor somatotopy and fre-
quency of oscillations. The fastest rhythms are more focal and so-
mato-topically organized than the slowest rhythms. Therefore, and
somehow contrarily to the prevalent view, active and fast process-
ing of stimuli does not produce the emergence of spatially synchro-
nized rhythmic activity but rather a transition of the system
towards very fast and less spatially organized dynamics.

Neuroscientific interest in neural oscillations above 100 Hz
emerged relatively recently. Initially observed in rat’s hippocampus
during sleep (Buzsaki et al., 1992), they were coined ripples and are
supposed to elicit the information transfer between the hippocam-
pus and neocortex (Sirota et al., 2003). In rats (Barth, 2003) high fre-
quency oscillations in the somato-sensory cortex of around 200 Hz
are supposed to extract features of an object under exploration. In
humans, evidence for very high frequency oscillations comes from
intracranial recordings in epileptic patients (Brovelli et al., 2005;
Edwards et al., 2005) and scalp EEG/MEG (Curio et al., 1994; Curio,
2000; Gonzalez et al., 2006). Interestingly, in a recent intracranial
study (Brovelli et al., 2005), only the high gamma band activity
(60–200 Hz) was able to distinguish the two different roles of the
premotor cortex, that is, to separate motor intention from atten-
tion/memory. Also in humans, Canolty and co-workers (2006)
showed coupling between the power of high frequency oscillations
around 150 Hz and theta oscillation power and phase. The observed
coupling varied with the behavioral task leading the authors to con-
clude that ‘‘cross-frequency coupling between distinct brain
rhythms facilitates the transient coordination of cortical areas re-
quired for adaptive behavior in humans”. Simultaneous multi-unit
activity (MUA) and local field potentials (LFP) in monkeys’ inferior–
temporal cortex revealed that LFP oscillations in the range 100–
300 Hz are the ones that best correlate with MUA (Kreiman et al.,
2006). Finally, several observations suggest that spontaneous very
high frequency oscillations are not present in developing networks
(Le Van Quyen et al., 2006). In rat pups, physiological ripple oscilla-
tions >140 Hz are observed in vivo in the hippocampus only after
the end of the second postnatal week (Buhl and Buzsaki, 2005).

To summarize, previous experimental evidence indicates that:
(1) very high frequency oscillations correlate better with MUA than
low frequency oscillations; (2) very high frequency oscillations are
more local than slow frequencies; (3) analysis based on very high
frequency oscillations allows taking decisions on shorter analysis
windows which is a mechanism more likely to appear in the brain
when fast information transmission is needed. Consequently,
restricting the analysis to the lower frequency bands might actu-
ally hinder progress in EEG in general and neuroprosthetics in par-
ticular. To facilitate progress in this area, it is essential to correctly
analyze the weak high frequencies since they might often remain
undetected if long analysis window and not-sensitive enough spec-
tral analysis procedures are used.

2.3. Increasing the reliability of high frequency estimates by multitaper
spectral analysis

The major problem with the estimation of high frequency oscil-
lations is their low amplitude when compared to low frequency

oscillations. As discussed above, this is not a consequence of filter-
ing properties of the tissues but rather appears to be a functional
property of the neural circuits involved in the generation of the dif-
ferent brain rhythms. Apparently, the higher the frequency of the
oscillation is the smaller the size of the population involved on
its generation.

The practical consequence is that the amplitude of the high fre-
quency oscillations measured at the scalp surface is of the order of
the measuring error or might be even smaller. Consequently, not
all spectral analysis procedures will provide correct estimates of
these rhythms. Methods suited for the analysis of high frequency
rhythms buried in noise should be able to reduce the variance of
the estimates even to the expenses of lowering spectral resolution.

The multitaper method (Thomson, 1982; Bell et al., 1993) for
spectral estimation (MTM) offers such possibility. The MTM is a
non-parametric approach, i.e., it does not prescribe an a priori
(e.g., auto-regressive) model for the process generating the time
series under analysis. MTM attempts to reduce the variance of
spectral estimates by computing a set of independent estimates
of the power spectrum. The data are pre-multiplied by orthogonal
tapers (discrete prolate spheroidal sequences) designed to mini-
mize the spectral leakage due to the finite length of the data set.
The final spectrum is computed by averaging over the ensemble
of spectra yielding a lower variance estimate than do single-taper
methods (Mitra and Pesaran, 1999). Within the concrete BCI con-
text, a comparison between multitaper estimator and Welsch
methods (Mensh et al., 2004) showed slight advantages for multi-
taper estimates but the differences did not reach statistical signif-
icance. Noteworthy, Mensh and co-workers demonstrated that
better classification is achieved when gamma band and slow corti-
cal potentials are combined with respect to the classification ob-
tained when only slow potentials are used. This observation
emphasize the need to widely explore the whole frequency range
of oscillations to better detect those able to discriminate between
cognitive tasks rather selecting narrow frequency bands which
were defined on historical rather than physiological basis.

2.4. A simple measure for feature selection: the discriminative power

The specific functional role of different brain rhythms is not yet
fully understood. Rhythms are context dependent and the same
frequency band might play different roles depending on its neural
origin and functional characteristics (e.g., evoked or induced). For
these reasons it is difficult to predict which particular frequency
bands are better to discriminate, as desired for neuroprosthetic
applications, two or more mental tasks. Even the conventional def-
inition of the bounds of the frequency bands is often challenged by
experimental results.

It is therefore desirable to have a procedure that automatically
detects the frequencies (or bands) that provide the better between
class discrimination. In what follows we briefly describe the con-
cept of discriminative power, a rather intuitive and fast approach
to feature selection that we have been successfully using in the
past.

To define the DP measure we depart from the idea that if the
amplitude of a certain range of neural oscillations carries specific
information about the subject functional/cognitive state, then the
distributions of the power of this oscillation (the power spectral
density, PSD) should be different for different tasks. This yields a
measure graded between 0 and 100, with zero representing com-
plete overlap between both PSD distributions (no discrimination
between tasks is possible) and 100 representing the perfect separa-
tion between them. The DP provides an estimate of how many tri-
als can be unambiguously classified on the basis of a given
frequency at a single electrode. For details see Gonzalez et al.
(2006).

326 R. Grave de Peralta et al. / Journal of Physiology - Paris 103 (2009) 324–332



Author's personal copy

2.5. Non-invasive estimation of LFPs

One major aspect limiting the application of the EEG as a con-
trol modality in neuroprosthetics is its low spatial resolution. This
resolution could be potentially improved if we were able to disen-
tangle the superposition of signals observed at the scalp attributing
this activity back to its neural origin. This necessarily passes by the
solution of an inverse problem. Contrarily to inverse problems
linked to other neuroimaging modalities, e.g., fMRI, MRI, PET, the
EEG inverse problem lacks a unique solution. Constraints need to
be introduced to reduce the space of all possible potential distribu-
tions within the brain able to explain one recorded scalp map. Con-
straints can be imposed at several levels. In what follows we
describe how constraints derived from the physics of the problem
can be set on the type of sources able to generate measured maps.
These constraints constitute the theoretical basis of a method
allowing a non-invasive although coarse estimation of LFP from
scalp recorded EEG data. Simulation studies and preliminary
experimental findings indicate that it can produce trustworthy
estimates of the temporal structure of LFP. These estimates made
possible to produce brain images reflecting the brain areas in
which oscillatory activity (OA) is modulated in response to stimu-
lus type and cognitive states. Thanks to its non-invasiveness, this
method has been used to decode the behavioral or cognitive state
of healthy humans with excellent accuracy (Gonzalez Andino et al.,
2007). In what follows we briefly sketch the mathematical founda-
tions of this approach. For further details, the interested reader is
referred to Grave de Peralta Menendez et al. (2004).

Poisson equation describes the relationship between scalp sur-
face EEG and the (primary) current density vector (Jp) under the
quasi-static approximation of Maxwell equations. Assuming a sim-
ple head model with unitary conductivity (a similar result is ob-
tained for piecewise constant conductivity) and denoting by G
the Green function, it can be written in any of the two following
forms:

VðrÞ ¼
Z

V
r � JpðrvÞGðr; rvÞ ðP1Þ

r � rV ¼ r � Jp ðP2Þ

where V denotes the electrical potential at scalp site r and rv

stand for points that belong to the brain volume. As for any vector
field, the primary current density vector can be written as the sum
of a solenoidal vector field, plus an irrotational vector field, plus the
gradient of a harmonic function, i.e., Jp ¼ r/þr� AþrH.
Substituting this expression into Eq. (P1) demonstrates that only
the irrotational part (r/) can produce the potential V (i.e., EEG
measurements). Importantly this result holds whatever the con-
ductivity pattern is. Furthermore, feeding the irrotational part
r/ into (P2) proves that the scalar function / (potential) has the
same Laplacian, and thus, the same sources and sinks as V. In sim-
pler words we can say that / and V are equal up to an arbitrary har-
monic function. This source model has been named ELECTRA
(Grave de Peralta Menendez et al., 2000).

Concurrent experimental evidence was provided by Plonsey
(1982) who stated that ‘‘the fields measured do not even arise from
(the primary sources) J but rather from secondary sources only.
These secondary sources, in turn, depend on both the electrical
field and the interfaces, and hence are related to r � J and the
geometry”.

In summary, the non-invasive estimation of LFP relies on a
physical truth concordant with existing experimental evidence.
Since only a few EEG measurements are usually available, there
is no sense in looking for sources that cannot generate the mea-
sured data. This introduces a strong constraint, since the space of
arbitrary current distributions explaining the measurements is re-

duced to that of irrotational currents. This space is still infinite, i.e.,
the solution is not yet unique. However, the original inverse prob-
lem, i.e., the estimation of the current density vector (3 compo-
nents) at each brain voxel is transformed into the estimation of a
potential function (a single value) at each brain voxel.

To definitely single out the solution, we use a regularization
operator (Grave de Peralta et al., 2001) based local auto-regressive
average (LAURA) model. It consists in a set of local averages (i.e.,
weights that sum one) regressing the activity in one point as a
weighted combination of the activity in the other points. Impor-
tantly, the weights are selected to follow the behavior of the poten-
tial of known sources (e.g., potential of the dipole) which are
irrotational everywhere except at a single point.

2.6. Applying non-invasively estimated LFP to a simple visuo-motor
task

In what follows we show how these ideas can be combined
within a very simple experiment to provide fast and accurate clas-
sification of hand response laterality. The goal of this analysis is to
show that the combination of techniques described above allows
classifying impending hand movements using very short analysis
windows. Noteworthy, speeded visuo-motor reaction time tasks
as the one considered here, are common in real life situations such
as driving a car or playing a computer game and should not be ig-
nored within neuroprosthetic research. In such tasks, a visual cue
(e.g., crossroad) serves as a warning signal that compels a motor
reaction.

Subjects and Task: Twelve healthy, right-handed subjects (six
women, 21–27 years) were tested. The task consisted of fixating
a central cross and of responding as fast as possible with one index
finger to a black dot. Each subject was tested in two blocks. In all
blocks, stimuli appeared every 5–6 s in random order either in
the left or in the right visual field. The central cross, serving as
the warning signal, preceded the stimulus by 3–4 s and remained
visible until the end of the response. In one block, responses were
made with the index finger of the left hand, in the other block with
the index finger of the right hand. Responses were assessed with a
response key device with a temporal precision of <1 ms. Hands of
the subjects rested over the response key and head was stabilized
by means of a head and chin rest. Each subject was tested in 120
trials per block.

EEG recording and preprocessing. EEG data were recorded using
the Geodesic Sensor Net (Tucker, 1993), which arranges 129 Ag/
AgCl electrodes in a tension structure that insures the sensors
are distributed evenly across the head surface. The EEG signals
were amplified with a high input-impedance (Zin 200 MW) Net
Amps dense-array amplifier (Electrical Geodesics, Inc.). The data
were recorded with a 0.1–500 Hz analog band-pass filter and dig-
itized with a 16-bit analog-to-digital converter. The data were col-
lected with the common electrode located at the nasion and the
reference electrode located at the vertex. Visual inspection was
used to identify and reject trials contaminated by movement arte-
facts if falling within the analysis window. EEG epochs of length
equal to each subject fastest response were selected. This period
is the most likely to include motor preparation while excluding ac-
tual execution of the movement likely to induce spurious classifi-
cation based on electromyographic activity. Since no EMG data
was recorded during the experiment a rather strict criterion was
used for artefact rejection after which 77 trials (out of 120) we kept
on average (over subjects) for posterior analysis.

Analysis procedure for each subject. For each trial selected for
analysis, the EEG traces recorded on the scalp were transformed
into intracranial estimates of LFP as described in Section 2.5. These
estimates were obtained at 4024 discrete pixels distributed on the
grey matter of the MNI brain. The computation of the lead field
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matrix and the regularization parameter followed the procedure
described in Grave de Peralta and Andrino (2008).

Once the LFP traces were computed for every single brain voxel
(eLFP), the following steps were applied: (1) single trial based com-
putation of power spectral density (PSD) for the pre-selected anal-
ysis window; (2) splitting the data into a learning (initial half of
trials) and a test set (remaining trials); (3) feature selection based
on the training set; and (4) computation the percentage of cor-
rectly decoded trials in the test set. Specific implementation details
are given below.

2.6.1. Single trial based computation of PSD
The eLFP were transformed to the frequency domain using the

multitaper method (seven sleepian data tapers). Each temporal
analysis window was multiplied by each of the tapers and the Fou-
rier components were then computed via FFT. The PSD was com-
puted by taking square of the modulus of these complex
numbers corresponding to frequencies from 0 (DC) to half of the
frequency sampling, i.e., 250 Hz.

2.6.2. Splitting the data into a learning and a test set
The whole data set was divided into two halves: (1) a learning

set composed of the first half of trials and used to detect the most
discriminative features and (2) a test set formed by the second half
of trials that is used to evaluate the classification.

2.6.3. Feature selection over the learning set
To select the most relevant features, i.e., the patterns of oscilla-

tory activity that characterize each cognitive/motor task we relied
on the discriminative power measure described above (Gonzalez
et al., 2006). The discriminative power (DP) was computed for all
voxels and frequencies over the single trials that belonged to the
learning set. As in Gonzalez et al. (2006) we computed two differ-
ent definitions of features (oscillatory patterns): (F1) the PSD at all
voxels for the most relevant frequency as identified by the DP and
(F2) the best 150 PSD sorted according to their DP combining all
sensors and frequencies in the range 0-half of frequency sampling.

2.6.4. Measuring decoding accuracy
The accuracy of the decoding was defined as the percentage of

trials on the test set that were correctly attributed to their original
class by a multivariate pattern recognition algorithm known as lin-
ear support vector machine (Hastie et al., 2001). The particular
implementation used was the linear OSU-SVM implemented in
the Matlab toolbox OSU-SVM (Ma, J., Zhao, Y., Ahalt, S. Matlab tool-
box OSU-SVM 3.0, available at http://www.eleceng.ohio-state.edu/
~maj/osu svm). All (hyper) parameters were set to their default
values. The percentage of correctly decoded trials in the test set
was computed using a leave-one-out cross-validation. Leave-one-
out (LOO) cross-validation is a method to estimate the predictive
accuracy of the pattern recognition algorithm. Given n trials in
the test set, the pattern recognition is trained on (n � 1) trials,
and then is tested on the trial that was left out. This process is re-
peated n times until every trial in the dataset has been included
once as a cross-validation instance. The results are averaged across
the n trials. Notably, the LOO estimate is an almost unbiased esti-
mate of the expected generalization error (Chapelle et al., 2002).

3. Results

Our aim was to discriminate which hand (left or right) was en-
gaged in a simple manual response task using a time window of
duration equal to the subject’s fastest response. Table 1 describes
the obtained classification rates for the two sets of features used.
On the basis of these results we can conclude that accurate predic-

tion of hand movement laterality based on spectral features can be
done accurately and rapidly enough to reproduce each subject’s
fastest response. A similar analysis to the one described above
using amplitude selected features in the temporal domain for both
EEG and estimated LFPs leads to classification rates barely above
chance. Fig. 1 shows a single subject mean ERPs aligned by the mo-
tor response for the left hand movements over three electrodes,
one over the fronto-central line and the two others placed closer
to C3 and C4. The ERP traces are superimposed on the mean scalp
map obtained for the time point where C4 reaches its maximum.
The map shows the classical pattern characteristic of left hand
movements with maxima over electrodes covering the motor cor-
tex contralateral to the moved hand. However, the ERP traces show
little sign of lateralized readiness potentials. It is therefore not

Table 1
Percentage of correct classification of laterality of upcoming movements based on
non-invasive estimates of local field potentials. Classification is obtained for a time
window of duration equal to the subject’s fastest response using two different
spectral features (PS): the best 150 features after ranking by the DP (F1) and the best
feature for each frequency (F2).

Subject Analysis window (ms) Best frequency (Hz) eLFP (F1/F2)

1 183 30 100/94
2 102 41 98/91
3 225 48 90/78
4 166 175 100/88
5 175 145 100/96
6 144 31 91/88
7 102 40 93/73
8 222 95 99/95
9 158 132 98/98

10 191 170 93/74
11 147 70 98/86
12 131 111 98/92

Average 147 85 97%

Fig. 1. Single subject mean ERPs (left hand movement) over contacts lying above
motor cortex and ERP map for the time at which amplitude is maximal at electrodes
near C4. The maximum is reached 5 ms before movement onset. ERP data were
obtained by aligning trials to the onset of motor response. The ERP traces over three
electrodes either placed closer to C3 and C4 or over the fronto-central line (near
FCz) are superimposed on the mean scalp map obtained when the contact near C4
reaches its maximum. Note that the map maximum lies over electrodes covering
the motor cortex contralateral to the moved hand but the ERP traces show little sign
of lateralized readiness potential.

328 R. Grave de Peralta et al. / Journal of Physiology - Paris 103 (2009) 324–332



Author's personal copy

surprising that classification based on amplitude derived features
fail in this case which is very likely due to the speeded nature of
the hand movements that leaves little time for motor preparation.

Fig. 2 shows the logarithm of the mean spectral power com-
puted using the multitaper method on contacts lying near C3 and
C4 for six of the subjects considered in this study. Both left and
right hand movements are shown. For subjects (d), (b) and (e)
the spectral power in the range 60–200 Hz is clearly higher for left
hand movements than for right hand movements near C4, i.e., the
electrode covering the right motor cortex. In contrast, similar
power spectrum is observed for both hand movements near C3.
If the differences observed in this study were due to simple EMG
contamination, then the opposite pattern should be observed.
The electrodes closer to the moved hand should pick up more
EMG activity and therefore power for left hand movements should
be higher that power for right hand movement near C3. Note also
that the situation is inverted, i.e., right hand movements lead to
stronger power spectrum over the contralateral contact (C3) than
left hand movement for subjects (a) and to some extent (c). In

addition, the spectra exhibit the typical 1/f law characteristic of
neural activity (note the logarithmic scale) rather than the rela-
tively flat spectrum typical of EMG activity.

Fig. 3 shows the average over subjects of the maximum discrim-
inative power over all brain voxels. These plots provide informa-
tion on the LFP oscillations that best serve to decode left from
right hand intentions in view of their task-related modulation.
The highest discriminative power, over subjects with more than
60% of the samples decoded, is observed for the gamma band
(40 Hz). However, the discriminative power remains high for the
very high frequency oscillations with a drop in discrimination ob-
served after 200 Hz.

The two insets in Fig. 4 depict the overall distribution over sub-
jects of the 150 voxels that better discriminate the laterality of
movements irrespective of the frequency band where they dis-
criminate. The voxels are further divided into two groups (two in-
sets) according to the sign of the difference in the mean spectral
power for both movements, i.e., power left hand � power right
hand. The topmost inset (Fig. 4a) represents then the part of the

Fig. 2. Mean power spectrum for 6 of the 12 subjects considered in this study when left (blue) or right (red) hand movements are performed. The spectrum is computed for
the analysis window considered here, i.e., from visual stimulus onset up to the fastest reaction time for each subject and depicted for electrodes closer to the locations of C3
and C4. The spectra were computed using the multitaper method and represented in a logarithmic scale. Both, the 1/f shape of the spectra and the lateralization of the effects
to the contralateral rather than ipsilateral hemisphere suggest that high frequency effects are of neural origin rather than EMG contamination.
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150 voxels where OA power for the frequency at which the voxel
discriminate is higher for left than right hand responses. The lower
inset (Fig. 4b), depicts the part of the 150 most discriminative vox-
els where spectral power was higher for right hand responses. To
create this summary image over subjects we first created individ-
ual images where we assigned a value of one to voxels belonging to
the best 150 features used for classification. Voxels that appear
repeatedly (i.e., the same voxel that discriminates at more than
one frequency) were considered only once. To summarize informa-
tion over subjects we summed the individual images to code in col-
or the amount of subjects displaying the specific effect at each area.
In all panels, results are surface-rendered onto a canonical brain
using the MRICRO software.

4. Discussion

The results of our analysis suggest that a combination of indi-
vidual feature selection over a broad band of frequencies and the
non-invasive estimation of LFPs provide physiologically interpret-
able results and good decoding accuracy over very short analysis
windows. Best classifying spectral features are localized over mo-
tor and premotor areas with the laterality distribution expected
on this task. The best classifying voxels are confined to the premo-
tor cortex, a region implicated in visually controlled movements.
Voxels at the dorsal premotor cortex (PMd) provide consistent dis-
crimination between conditions over subjects. This result agrees
with studies (Hoshi and Tanji, 2004) in non-human primates indi-
cating that the PMd area is involved in integrating information
about which arm to use and the target to be reached. Taken as a
whole, our results indicate that scalp recorded EEG signals contain
relevant information about neural functioning coded in terms of
oscillations that allows perfect and fast differentiation on at least
this simple motor task. What is probably more important, creating
a neural activation image that relies on pattern recognition applied
to features selected in the frequency domain leads to neurophysi-
ologically interpretable results which are not necessarily identical
to conventional inverse solution images. A similar finding has been
reported for the case of fMRI images (Kamitani and Tong, 2004),
where pattern recognition actually increases the spatial resolution
of functional images when compared to conventional statistical
processing. While further research is certainly needed on this issue,
it nonetheless confirms that functional neuroimaging might bene-
fit from analysis techniques regularly used within neuroprosthetic
research.

We have here provided theoretical and experimental evidence
to refute claims that VHFO are not measurable at the scalp surface.
This aspect is very important since invasive recordings of neural
activity within and outside the scope of neuroprosthetic have
revealed a role for very high frequency oscillations in neural

Fig. 3. Mean (over subjects) discriminative power (DP) vs. frequency. Mean over
subjects of the best DP observed over the whole solution space. A peak in the
discrimination is observed at gamma band but discrimination is still high for
frequencies up to 180 Hz where a drop is observed.

Fig. 4. Brain voxels that better discriminate on average (over subjects) between right and left hand movements (all frequencies confounded). Spectral power is computed for
the LFP estimated at each brain voxel using a multitaper method. The DP is used to determine frequencies and voxels where the probability densities (PD) of spectral power
over trials differ the most between both classes of movements. The topmost inset (a) represents the part of the 150 voxels where OA power for the frequency at which the
voxel discriminate is higher for left than right hand responses. The lower inset (b) depicts the part of the 150 most discriminative voxels where spectral power was higher for
right hand responses.
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function. After our initial study using the same dataset described
here, two newer studies have addressed the importance of oscilla-
tions above 100 Hz for neuroprosthetics and found no such rela-
tionship. Both, methodological and experimental reasons might
explain the differences.

In the first of the studies Waldert et al. (2008) used EEG and
MEG to decode the direction of center-out hand movements. Both,
the experiment and the goal of the analysis differ from ours. Fre-
quencies encoding movement laterality are not necessarily the
same as those coding for movement direction. A second study
(Bai et al., 2007) failed to disclose influences of very high frequency
oscillations on a self-paced task where sequences of keys had to be
pressed. The EEG signals in later study were low-pass filtered at
100 Hz using a third-order Butterworth filter which prevent obser-
vation of VHFO.

Our initial study on VHFO (Gonzalez et al., 2006) already re-
vealed interesting inter-individual differences in the range of fre-
quencies that provide the best decoding. In fact, gamma or high
gamma band oscillations provide the best decoding for half of
the subjects and VHFO for the other half. Indeed, in a preliminary
study (unpublished data) we have assessed the decoding power
of very high frequencies in a self-paced finger tapping task. Inter-
estingly, oscillations above 100 Hz provide the best decoding when
the same hand is used for key presses within a block but not when
the left and right finger responses are alternated within a block.
Since every subject performed both tasks within the same session
and using the same fingers and hands it cannot be a consequence
of EMG contamination but very likely a reflect of motor adaptation
(learning). Furthermore, since this task is self-paced, the possibility
that visuo-motor integration processes could explain the emer-
gence of VHFO is ruled out. These results are more consistent with
a physiological role of the VHFO and the existence of consistent in-
ter-individual and across-tasks variability. The most likely expla-
nation for divergences in results is that the range of frequencies
that better discriminate between different tasks is exquisitely sen-
sitive to the nature of the task itself. For instances, while the ERP
analysis of the visuo-motor data considered here, showed consis-
tent lateralization of motor responses over contralateral motor cor-
tex, the free choice selection of most discriminant frequencies
done by the DP measure did not revealed slow frequencies that
should be expected if readiness potentials were the only functional
marker of this task. While further research is needed to understand
why high frequency oscillations rather than slow potentials are
more discriminative in this example, it nevertheless illustrates
the importance of broad spectral exploration for the selection of
relevant features for neuroprosthetic and more importantly for
the whole field of EEG analysis.

5. Conclusions

Here, we have discussed some approaches that could contribute
to enhance the capabilities of non-invasive neuroprosthetic sys-
tems based on scalp EEG recordings. In particular, we have shown
that wide band spectral analysis combined with non-invasively
estimates of field potentials provide excellent decoding results
on at least a simple task, suggesting new alternatives for the devel-
opment of direct non-invasive neuroprosthetic systems. Issues
such as the precise role of very high frequency oscillations or the
best approach to obtain unique better estimates of Local Field
Potentials deserve further study.
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