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Abstract Recent experiments have shown the possibility
of using the brain electrical activity to directly control
the movement of robots or prosthetic devices in real
time. Such neuroprostheses can be invasive or non-
invasive, depending on how the brain signals are re-
corded. In principle, invasive approaches will provide a
more natural and flexible control of neuroprostheses,
but their use in humans is debatable given the inherent
medical risks. Non-invasive approaches mainly use scalp
electroencephalogram (EEG) signals and their main
disadvantage is that these signals represent the noisy
spatiotemporal overlapping of activity arising from very
diverse brain regions, i.e., a single scalp electrode picks
up and mixes the temporal activity of myriads of neu-
rons at very different brain areas. In order to combine
the benefits of both approaches, we propose to rely on
the non-invasive estimation of local field potentials
(LFP) in the whole human brain from the scalp mea-
sured EEG data using a recently developed inverse
solution (ELECTRA) to the EEG inverse problem. The
goal of a linear inverse procedure is to de-convolve or
un-mix the scalp signals attributing to each brain area its
own temporal activity. To illustrate the advantage of
this approach we compare, using an identical set of
spectral features, classification of rapid voluntary finger
self-tapping with left and right hands based on scalp
EEG and non-invasively estimated LFP on two subjects
using a different number of electrodes.
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Introduction

Recent experiments have shown the possibility of using
the brain electrical activity to directly control the
movement of robots or prosthetic devices in real time
(Wessberg et al. 2000; Pfurtscheller and Neuper 2001;
Meeker et al. 2002; Serruya et al. 2002; Taylor et al.
2002; Carmena et al. 2003; Mehring et al. 2003; Millán
et al. 2004). This kind of brain-controlled assistive sys-
tem is a natural way to augment human capabilities by
providing a new interaction link with the outside world.
As such, it is particularly relevant as an aid for paralyzed
humans, although it also opens up new possibilities in
human-robot interaction for able-bodied people.

Initial demonstrations of the feasibility of controlling
complex neuroprostheses have relied on intracranial
electrodes implanted in the brain of monkeys (Wessberg
et al. 2000; Meeker et al. 2002; Serruya et al. 2002;
Taylor et al. 2002; Carmena et al. 2003; Mehring et al.
2003). In these experiments, one or more array of
microelectrodes records the extracellular activity of sin-
gle neurons (their spiking rate) in different areas of the
cortex related to planning and execution of move-
ments—motor, premotor and posterior parietal cortex.
Then, from the real-time analysis of the activity of the
neuronal population, it has been possible to predict
either the animal’s movement intention (Meeker et al.
2002; Mehring et al. 2003) or the monkey’s hand
trajectory (Wessberg et al. 2000; Taylor et al. 2002;
Carmena et al. 2003), and to drive a computer cursor to
desired targets (Serruya et al. 2002; Taylor et al. 2002).
The motivation for these invasive approaches is that it
has been widely shown that motor parameters related to
hand and arm movements are encoded in a distributed
and redundant way by ensembles of neurons in the

Communicated by Irene Ruspantini and Niels Birbaumer

R. Grave de Peralta Menendez (&) Æ S. González Andino
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motor system of the brain (for a review see Schwartz
et al. 2001).

For humans, however, non-invasive methods based
on electroencephalogram (EEG) signals are preferable
because of ethical concerns and medical risks. The main
source of the EEG—the brain electrical activity recorded
from electrodes placed over the scalp—is the synchro-
nous activity of thousands of cortical neurons. Thus,
EEG signals suffer from a reduced spatial resolution and
increased noise due to measurements on the scalp. As a
consequence, current EEG-based brain-actuated devices
are limited by a low channel capacity and are considered
too slow for controlling rapid and complex sequences of
movements. So far control tasks based on human EEG
have been limited to simple exercises such as moving a
computer cursor to the corners of the screen (Wolpaw
and McFarland 1994) or opening a hand orthosis
(Pfurtscheller and Neuper 2001). However, recently,
Millán et al. (2004) have shown for the first time that
asynchronous analysis of EEG signals is sufficient for
humans to continuously control a mobile robot. Two
human subjects learned to mentally drive the robot be-
tween rooms in a house-like environment using an EEG-
based brain interface that recognized three mental states.
Furthermore, mental control was only marginally worse
than manual control on the same task. A key element of
this brain-actuated robot is a suitable combination of
intelligent robotics, asynchronous EEG analysis and
machine learning that only requires the user to deliver
high-level commands, which the robot performs auton-
omously, at any time 1.

Despite this latter demonstration of the feasibility of
EEG-based neuroprostheses, it is still believed that only
invasive approaches will provide natural and flexible
control of robots (Nicolelis 2001; Donoghue 2002). The
rationale is that surgically implanted arrays of electrodes
will be required to properly record the brain signals
because the non-invasive scalp recordings with the EEG
lack spatial resolution. However, recent advances in
EEG analysis techniques have shown that the sources of
the electric activity in the brain can be estimated from
the surface signals with high spatial accuracy. We believe
that such EEG source analysis techniques overcome the
lack of spatial resolution and may lead to surface EEG-
based neuroprostheses that parallel invasive ones.

The basic question addressed in this paper is the
feasibility of non-invasive brain interfaces to reproduce
the prediction properties of the invasive systems evalu-
ated in animals while suppressing their risks. Therefore,
we propose the non-invasive estimation of local field
potentials (LFP) in the whole human brain from the

scalp-measured EEG data using recently developed
distributed linear inverse solution termed ELECTRA
(Grave de Peralta Menendez et al. 2000). The use of
linear inversion procedures yields an on-line implemen-
tation of the method, a key aspect for real-time appli-
cations.

The development of a brain interface based on
ELECTRA, i.e., non-invasive estimates of LFP, allows
one to apply methods identical to those used for EEG-
based brain interfaces but with the advantage of tar-
geting the activity in specific brain areas. In this respect,
our approach aims to parallel the invasive approaches
described before that directly feeds intracranial signals
into the classification stage of the brain interface, except
that we calculate these intracranial signals from the
surface EEG data. An additional advantage of our
approach over scalp EEG is that the latter represents the
noisy spatiotemporal overlapping of activity arising
from very diverse brain regions, i.e., a single scalp elec-
trode picks up and mixes the temporal activity of myr-
iads of neurons at very different brain areas.
Consequently, temporal and spectral features, which are
probably specific to different parallel processes arising at
different brain areas, are intermixed on the same
recording. This certainly complicates the classification
task by misleading even the most sophisticated analysis
methods. For example, an electrode placed on the
frontal midline picks up and mixes activity related to
different motor areas known to have different functional
roles such as the primary motor cortex, supplementary
motor areas, anterior cingulate cortex, and motor cin-
gulate areas.

On the other hand, the proposed approach bears two
main advantages over invasive approaches. First, it
avoids any ethical concern and the medical risks asso-
ciated with intracranial electrocorticographic recordings
in humans. Second, the quality of the signals directly
recorded on the brain deteriorates over time, requiring
new surgical interventions and implants in order to keep
the functionality of the device.

The feasibility of this non-invasive LFP approach is
shown here in the analysis of single trials recorded
during self-paced finger tapping with right and left
hands. To illustrate the generalization of our approach
and the influence of the number of electrodes, we report
results obtained with two normal volunteers using 111
and 32 electrodes, respectively. The capability to predict
and differentiate the laterality of the movement using
scalp EEG is compared with that of LFP estimated
using ELECTRA inverse solution.

Methods

Data recording

Two healthy right-handed young subjects (males,
30 years and 32 years) completed a self-paced finger-
tapping task. Subjects were instructed to press at their

1This is possible because the operation of the brain interface is
asynchronous and, unlike synchronous approaches (Wolpaw and
McFarland 1994; Birbaumer et al. 1999; Donchin et al. 2000;
Roberts and Penny 2000; Pfurtscheller and Neuper 2001), does not
require waiting for external cues that arrive at a fixed pace of 4–
10 s.
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own pace the left mouse button with the index finger of a
given hand while fixating a white cross at the middle of
the computer screen. The intervals between successive
movements were rather stable for the two subjects,
namely, around 500 ms and 2,000 ms for subjects A and
B, respectively. Subjects performed several sessions of
the task with breaks of around 5–10 min in between.

The EEG was recorded at 1,000 Hz from 111 scalp
electrodes (Electric Geodesic Inc. system, subject A) and
at 512 Hz from 32 scalp electrodes (Biosemi Active Two
system, subject B). Head position was stabilized with a
head and chin rest. In the first case (i.e., 111 electrodes),
off-line processing of the scalp data consisted uniquely in
the rejection of bad channels and their interpolation
using a simple nearest neighbor’s algorithm. This pro-
cedure was not necessary with the 32-electrode system.
Since digitized electrode positions were not available, we
used standard spherical positions and the 10-10 system.
These positions were projected onto the scalp of the
segmented average MNI brain 2.

The pace selected by the subjects allowed for the
construction of trials aligned by the response consisting
of 400 ms before key press. We recorded 680 trials of the
left index tapping and 634 trials of the right index tap-
ping for subject A, while for subject B we recorded 140
left trials and 145 right trials. We did not apply any
visual or automatic artifact rejection and so kept all
trials for analysis 3.

Local field potentials estimates from scalp EEG
recordings

The EEG measures the extracranial electric fields pro-
duced by neuronal activity within a living brain. When
the positions and orientations of the active neurons in
the brain are known, it is possible to calculate the pat-
terns of electric potentials on the surface of the head
produced by these sources. This process is called the

forward problem. If instead the only available infor-
mation is the measured pattern of electric potential on
the scalp surface, then one is interested in determining
the intracranial distribution of neural activity. This is
called the inverse problem or the source localization
problem, for which there is no unique solution. The only
hope is that additional information can be used to
constrain the infinite set of possible solutions to a single
one. Depending on the additional information, different
inverse solutions, i.e., different reconstructions of neural
activities with different properties, can be obtained (van
Oosterom 1991; Scherg 1994).

Classical constraints used to solve the EEG inverse
problem rely on considering the neural generators as
current dipoles (Ilmoniemi 1993). In this case, the mag-
nitude to estimate is the dipole model, supposed to rep-
resent a current density vector that can be distributed over
thewhole graymattermantle or confined to a single point.
When the dipole is assumed to be confined to a single or
few brain sites, the task is to solve a nonlinear optimiza-
tion problem aimed to find simultaneously the position
and dipolar model of the dipoles (Scherg 1992; Mosher
et al. 1999). When the dipoles are distributed over a dis-
crete set of solution points within the brain, the task is to
find the magnitude of the dipolar model for each dipole
leading to an underdetermined inverse problem which is
usually solved by adding linear constraints such as mini-
mum norm, etc. (Hamalainen and Ilmoniemi 1994; Grave
dePeraltaMenendez andGonzalezAndino 1998). In both
approaches, single dipoles or distributed dipoles, the
magnitude to be estimated is a vector field commonly
termed the current density vector. However, in the second
approach that considers distributed models, the values of
the current density vector are obtained for the whole gray
matter akin to the tomographic images produced by other
modalities of functional neuroimaging (fMRI, PET, or
SPECT), but with temporal resolution in the order of
milliseconds.

A change in the formulation of the EEG inverse
problem takes place when the fact that neurophysio-
logical currents are ohmic and can therefore be ex-
pressed as gradients of potential fields is included as
constraint in the formalism of the problem (Grave de
Peralta Menendez et al. 2000). With this neurophysio-
logical constraint, we can reformulate the EEG inverse
problem in more restrictive terms, providing the basis
for the non-invasive estimation of intracranial LFP (a
scalar field) instead of the current density vector (a 3D
vector field) (Grave de Peralta Menendez et al. 2004).
This solution is termed ELECTRA.

ELECTRA can be intuitively described as the non-
invasive estimation of LFP by means of virtual intra-
cranial electrodes. The advantages of this method are:

1. Mathematical simplicity and computational efficiency
compared to models based on current density esti-
mation, since the number of unknowns estimated by
the inverse model is threefold fewer, i.e., the un-
knowns decrease from a vector field to a scalar field.

2This projection is based on the best-fitting sphere with center and
radius selected to fit the scalp region used by the electrodes. This
method requires the careful positioning of the electrodes based on
anatomical landmarks, i.e., vertex electrode (Cz), middle line,
frontal electrodes (Fp) etc. Note that, due to the inaccuracies of
boundary detection algorithms, there is no rigid transformation
able to ‘‘land’’ a set of electrodes on the scalp detected from the
MRI. For this reason, most landing procedures need, at some
stage, to project electrode positions on the detected scalp. This
procedure has been widely used and tested in clinical studies using
standard EEG configurations (e.g., 10-20 and 10-10 systems) where
the subject’s MRI is not available as well as in the construction of
realistic head models for presurgical evaluation of epileptic pa-
tients. Still, minor differences between electrode locations might be
expected from one session to another. These variations can be
considered as noise in the data and its influence can be alleviated
with regularization strategies.
3After a visual a posteriori artifact check of the trials, we found no
evidence of muscular artifacts that could have contaminated one
condition differently from the other.
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2. Contrary to dipolar models, distributed linear solu-
tions provide simultaneous temporal estimates for all
brain areas not being confined to a few sites.

3. The temporal reconstructions provided by linear
distributed inverse solutions are better than those of
discrete spatiotemporal models or L1-based recon-
structions (Liu et al. 1998). A few comparisons with
intracranial data are also extremely appealing, sug-
gesting systematically that temporal reconstructions
of the generators are more reliable than their spatial
counterparts.

4. Since these are linear methods, computation of the
intracranial estimates reduces to a simple inverse
matrix by vector product, which warrants efficient
on-line implementation.

The analysis that follows relies on the estimation for
each single trial of the 3D distribution of the LFP using
ELECTRA source model. The head model, relating
intracranial sources to scalp measurements, was derived
from the Montreal Neurological Institute average brain.
The LFP were then estimated at 4,024 pixels distributed
on a 6-mm regular grid restricted to the gray matter of
the brain model.

Statistical classifier

The different mental tasks are recognized by a Gaussian
classifier trained to classify samples (single trials) as class
‘‘left’’ or ‘‘right’’ (Millán et al. 2002b, 2004). The output
of this statistical classifier is an estimation of the pos-
terior class probability distribution for a sample; i.e., the
probability that a given single trial belongs either to class
‘‘left’’ or class ‘‘right’’.

In this statistical classifier, every Gaussian unit rep-
resents a prototype of one of the mental tasks (or clas-
ses) to be recognized. We use several prototypes per
mental task. We assume that the class-conditional
probability density function of class Ck is a superposi-
tion of Nk Gaussians (or prototypes) and that classes
have equal prior probabilities. In our case, all the classes
have the same number of prototypes. In addition, we
assume that all prototypes have an equal weight of 1/Nk.
The challenge is to find the appropriate position of the
Gaussian prototype as well as an appropriate variance.

Usually, each prototype of a given class Ck has its
own covariance matrix

P
k
i . In our case, in order to

reduce the number of parameters, we restrict our
model to a diagonal covariance matrix Ók that is
common to all the prototypes of the class Ck.

To initialize the center of the prototypes, lk
i , of the

class Ck we run a clustering algorithm—typically, self-
organizing maps (Kohonen 1997). We then initialize the
diagonal covariance matrix by setting

Rkð Þmm¼
1

Skj j
X

n2Sk

xn � li�ðnÞ
k

� �2

m
ð1Þ

where Sk denotes the set of indexes of samples belonging
to the class Ck, | Sk | is the cardinality of this set, i*(n) is
the nearest prototype of this class to the sample xn,
and lk

i*(n) is its center. The index m denotes the element
of a vector, and mm the diagonal element of a matrix.

During learning, we improve these initial estimations
iteratively by stochastic gradient descent so as to mini-

mize the mean square error E ¼ 1
2

P

j
yj � tj
� �2

where tj is

the jth component of the target vector in the form 1-of-c;
e.g., the target vector for class ‘‘left’’ is coded as (0,1).

After updating lk
i and

P
k
i for a given training sam-

ple, the covariance matrices of all the prototypes of the
same class are averaged to obtain the common class
covariance matrix Ók. This simple operation leads to
better performance than if separate covariance matrices
are kept for each individual prototype. It is also worth
noting that given the relatively low number of parame-
ters of the covariance matrices to be estimated, as
compared to when we use the full matrices, usual regu-
larization techniques (e.g., Hastie et al. 2001) do not
improve performance. The interpretation of this rule is
that, during training, the centers of the Gaussians are
pulled towards the samples of the mental task they
represent and are pushed away from samples of other
task.

Feature extraction

To test the capability of our LFP approach to discrim-
inate between left and right finger movements, we have
done a tenfold cross-validation study and also have
compared the performance of the LFP-based classifier to
an EEG-based classifier.

In the case of using scalp EEG signals, each single trial
of 400 ms of raw EEG potentials is first spatially filtered
by means of a common average reference method (re-
moval of the average activity over all the electrodes).
Spatial filtering yields new potentials that represent better
the cortical activity due only to local sources below the
electrodes. The superiority of this kind of transformed
potentials over raw potentials for the operation of a brain
interface has been demonstrated in different studies (e.g.,
Babiloni et al. 2000). Then the power spectral density
(PSD) in the band 8–30 Hz was estimated for the ten
channels CPz, Pz, FC3, FC4, C3, C4, CP3, CP4, P3, P4,
which cover the motor cortex bilaterally. We have suc-
cessfully used these PSD features in previous experiments
(Millán et al. 2002b, 2004). In particular, we computed the
PSD using modern multitaper methods (Thomson 1982).
These methods have shown to be particularly well suited
for spectral analysis of short segments of noisy data, and
have been successfully applied to the analysis of neuronal
recordings in behaving animals (e.g., Pesaran et al. 2002).
Specifically, the PSD was estimated using seven Slepian
data tapers.

In the case of the classifier based on the estimated
LFP, we have also computed the PSD in the band
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8–30 Hz using multitaper methods with seven Slepian
data tapers. The PSD was estimated for each single trial
of 400 ms on the 50 most relevant pixels (out of 4,024) as
selected by a feature selection algorithm that is a variant
of the so-called Relief method (Kira and Rendell 1992).
Relief has been successfully applied to the selection of
relevant spectral features for the classification of EEG
signals (Millán et al. 2002a). Feature selection was only
applied to the estimated LFP because of the large
number of potential pixels that can be fed to the clas-
sifier. In the case of scalp EEG, it has been widely shown
that only channels over the motor cortex suffice for good
recognition of bimanual movements. Also, feature
selection was done on the training set of each cross-
validation step.

Results

Table 1 shows the results of this comparative study
based, as explained before, on a tenfold cross-validation
using the Gaussian classifier. This means that all the
available single trials of each class are split in ten dif-
ferent subsets, and then we take nine of them to train the
classifier and the remaining for testing the generalization
capabilities. This process is repeated ten times to get an
average of the performance of the classifier based on
PSD features computed either on surface EEG or non-
invasive estimates of LFP.

Classification based on surface EEG achieves error
rates similar to previous studies (11% on average for the
two subjects), and that despite the short time windows
used to estimate the PSD, namely 400 ms. In particular,
performance is worse for subject A than for subject B
(11.6% vs. 10.5%), which illustrates the difficulty of
recognizing rapid motor decisions (500 ms tapping pace
vs. 2,000 ms) based on short segments of brain electrical
activity.

In contrast, the performance of the Gaussian classi-
fier based on non-invasive LFP is extremely good as it
only makes 3.7% and 4.9% errors for subjects A and B,
respectively. These performances are three- and twofold
better than when using surface EEG features, respec-
tively. This clearly shows the advantage of using non-
invasive estimations of LFP over surface EEG. This is
particularly the case for subject A, for whom we re-
corded from 111 electrodes. In addition, it is also worth

noting that performance is still very good for subject B
even if the LFP were estimated from only 32 scalp
electrodes.

Regarding the spatial distribution of the pixels se-
lected by the feature selection algorithm, they form
clusters located on the frontal cortex with tendency to
have the most relevant ones at the dorso-lateral pre-
motor cortex and including different frequency values.
Altogether, these results suggest that the prediction
capabilities of brain interfaces based on non-invasive
estimations of LFP might parallel those of invasive
approaches.

Discussion

The goal of a linear inverse procedure is to de-convolve
or un-mix the scalp signals attributing to each brain area
its own temporal activity. By targeting on the particular
temporal/spectral features at specific brain areas, we can
select a low number of features that capture information
related to the state of the individual in a way that is
relatively invariant to time. Eventually, this may avoid
long training periods and increase the reliability and
efficiency of the classifiers. For the case of paralyzed
patients the classification stage can be improved by
focusing on the specific brain areas known to participate
and code the different steps of voluntary or imagined
motor action through temporal and spectral features.

Distributed inverse solutions, as any other inverse
method, suffer from limitations inherent to the ill-posed
nature of the problem. The limitations of these methods
have been already described (Grave de Peralta Menen-
dez and Gonzalez Andino 1998) and concern basically:
(1) errors on the estimation of the sources’ amplitudes
for the instantaneous maps and (2) inherent blurring,
i.e., the spatial extent of the actual source is usually
overestimated. However, several theoretical and experi-
mental studies showed that spectral and temporal fea-
tures are quite well preserved by these methods (Grave
de Peralta Menendez et al. 2000) that surpass nonlinear
and dipolar methods (Liu et al. 1998). The analysis
strategy selected in our research plan relies on temporal
and spectral features disregarding estimated amplitudes
so as to alleviate these limitations.

Finally, since the head model is stable for the same
subject over time, the inverse matrix requires to be
computed only once for each subject and is invariant
over recording sessions. On-line estimation of intracra-
nial field potentials is reduced to a simple inverse-ma-
trix-by-data-product, which yields an on-line
implementation, a key aspect for real-time applications.
However, despite a careful positioning of the electrodes
and the regularization used to deal with the noise asso-
ciated to electrode misplacement, the estimated activity
might still result displaced to a neighbor location out of
the strict boundaries defined in the anatomical atlas.
This could happen because of the differences between
the subject head and the average MNI head model or

Table 1 Error rates in the recognition of ‘‘left’’ versus ‘‘right’’
finger movements made by a Gaussian classifier based on PSD
features computed either on surface EEG or non-invasive LFP
using the multitaper method for subjects A and B. Results are the
average of a tenfold cross-validation study

Method Subject (%)

A B

EEG multitaper 11.6 10.5
LFP multitaper 3.7 4.9
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due to the differences in electrode locations from one
session to another. Based on the results of the extensive
studies of presurgical evaluation of epileptic patients, we
should expect low errors using realistic head models
based on subjects’ MRI. However, since presurgical
studies barely use more than one EEG recording session,
the second source of error requires further study.

Regarding the possibility of using biophysically con-
strained inverse solutions for the control of neuropros-
theses, the results reported in this paper are highly
encouraging. They suggest that recognition of motor
intents is possible from non-averaged inverse solutions
and are even superior to systems based on scalp EEG.
This could be the basis of the non-invasive brain–com-
puter interface put forward by Grave de Peralta Me-
nendez et al. (2003) allowing for a real-time anticipation
of the direction of the upcoming movements. While such
anticipation is possible from invasive recordings from
neuronal populations in the motor cortex of monkeys
(Carmena et al. 2003) as well as from LFP recorded
from the motor cortex of monkeys (Mehring et al. 2003),
the possibility of doing the same non-invasively is
appealing for its much higher potential with humans.
Finally, the use of non-invasive estimations of LFP at
specific brain areas allows for the replacement of most of
the empirical features used in classical EEG-based brain
interfaces by features with a priori established neuro-
physiological information.

Acknowledgements This work was supported by the Swiss National
Science Foundation through the National Center of Competence in
Research on ‘‘Interactive Multimodal Information Management
(IM2)’’ and also by the Swiss National Science Foundation grant
3152A0-100745/1.

References

Babiloni F, Cincotti F, Lazzaroni L, Millán J del R, Mouriño J,
Varsta M, Heikkonen J, Bianchi L, Marciani MG (2000) Linear
classification of low-resolution EEG patterns produced by
imagined hand movements. IEEE Trans Rehab Eng 8:186–188

Birbaumer N, Ghanayim N, Hinterberger T, Iversen I, Kotchou-
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Heikkonen J, Babiloni F (2002b) A local neural classifier for the
recognition of EEG patterns associated to mental tasks. IEEE
Trans Neural Netw 13:678–686

Millán J del R, Renkens F, Mouriño J, Gerstner W (2004) Non-
invasive brain-actuated control of a mobile robot by human
EEG. IEEE Trans Biomed Eng 51:1026–1033

Mosher JC, Baillet S, Leahy RM (1999) EEG source localization
and imaging using multiple signal classification approaches. J
Clin Neurophysiol 16:225–238

Nicolelis MAL (2001) Actions from thoughts. Nature 409:403–407
van Oosterom A (1991) History and evolution of methods for

solving the inverse problem. J Clin Neurophysiol 8:371–380
Pesaran B, Pezaris JS, Sahani M, Mitra PP, Andersen RA (2002)

Temporal structure in neuronal activity during working mem-
ory in macaque parietal cortex. Nat Neurosci 5:805–811

Pfurtscheller G, Neuper C (2001) Motor imagery and direct brain-
computer communication. Proc IEEE 89:1123–1134

Roberts SJ, Penny WD (2000) Real-time brain-computer interfac-
ing: a preliminary study using Bayesian learning. Med Biol Eng
Comput 38:56–61

Scherg M (1992) Functional imaging and localization of electro-
magnetic brain activity. Brain Topogr 5:103–111

Scherg M (1994) From EEG source localization to source imaging.
Acta Neurol Scand Suppl 152:29–30

Schwartz AB, Taylor DM, Helms Tillery SI (2001) Extraction
algorithms for cortical control of arm prosthetics. Curr Opin
Neurobiol 11:701–707

Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Don-
oghue J (2002) Instant neural control of a movement signal.
Nature 416:141–142

Taylor DM, Helms Tillery SI, Schwartz AB (2002) Direct cortical
control of 3D neuroprosthetic devices. Science 296:1829–1832

Thomson DJ (1982) Spectrum estimation and harmonic analysis.
Proc IEEE 70:1055–1096

Wessberg J, Stambaugh CR, Kralik JD, Beck PD, Laubach M,
Chapin JK, Kim J, Biggs SJ, Srinivassan MA, Nicolelis MAL
(2000) Real-time prediction of hand trajectory by ensembles of
cortical neurons in primates. Nature 408:361–365

Wolpaw JR, McFarland DJ (1994) Multichannel EEG-based
brain-computer communication. Electroencephalogr Clin
Neurophysiol 90:444–449

64


	Sec1
	Sec1
	Sec2
	Sec2
	Sec3
	Sec3
	Sec4
	Sec4
	Sec5
	Sec5
	Sec6
	Sec6
	Sec7
	Sec7
	Sec8
	Sec8
	Tab1
	Ack
	Art1
	Bib
	Bib1
	CR1
	CR2
	CR3
	CR4
	CR5
	CR6
	CR7
	CR8
	CR9
	CR10
	CR11
	CR12
	CR13
	CR14
	CR15
	CR16
	CR17
	CR18
	CR19
	CR20
	CR21
	CR22
	CR23
	CR24
	CR25
	CR26
	CR27
	CR28
	CR29
	CR30
	CR31
	CR32
	CR33
	CR34

