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Abstract: Invasive recordings of local field potentials (LFPs) have been used to ‘‘read the mind’’ of mon-
keys in real time. Here we investigated whether noninvasive field potentials estimated from the scalp-
recorded electroencephalogram (EEG) using the ELECTRA source localization algorithm could provide
real-time decoding of mental states in healthy humans. By means of pattern recognition techniques on
500-ms EEG epochs, we were able to discriminate accurately from single trials which of four categories
of visual stimuli the subjects were viewing. Our results show that it is possible to reproduce the decod-
ing accuracy previously obtained in animals with invasive recordings. A comparison between the decod-
ing results and the subjects’ behavioral performance indicates that oscillatory activity (OA), elicited in
specific brain regions) codes better for the visual stimulus category presented than the subjects’ actual
response, i.e., is insensitive to voluntary or involuntary errors. The identification of brain regions partici-
pating in the decoding process allowed us to construct 3D-functional images of the task-related OA.
These images revealed the activation of brain regions known for their involvement in the processing of
this type of visual stimuli. Electrical neuroimaging therefore appears to have the potential to establish
what the brain is processing while the stimuli are being seen or categorized, i.e., concurrently with sen-
sory-perceptual processes. Hum Brain Mapp 28:614–624, 2007. VVC 2006 Wiley-Liss, Inc.
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INTRODUCTION

Until recently, ‘‘mind reading’’ was considered to belong
to the realm of science fiction. Although still a controversial
issue, the ability to decode a conscious subject’s cognitive
state is on the brink of turning into reality [Mehring et al.,
2003; Pesaran et al., 2002; Wessberg et al., 2000]. A recent
functional MRI (fMRI) study has shown that it is possible to
determine with a high level of accuracy which of eight stim-
ulus orientations a subject is seeing [Kamitani and Tong,
2005]. However, due to the properties of the hemodynamic
response on which the fMRI technique relies [Buckner
et al., 1996; Menon and Kim, 1999], decoding of stimulus
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orientation required periods of analysis extending beyond 16 s.
Since during this period a normal brain can effectively pro-
cess a multitude of visual stimuli, alternative neuroimaging
approaches to the question of ‘‘mind reading’’ in healthy sub-
jects have to be explored. Ideally, such approaches should
possess a high temporal resolution and be able to trace neural
activity in real time, while remaining noninvasive.
The most extensively explored technique for assessing men-

tal chronometry is electroencephalography (EEG), which re-
flects millisecond-by-millisecond activity of neural populations.
However, EEG signals measured on the scalp are severely lim-
ited in terms of spatial resolution, as they result from the spatial
integration of the activity of large groups of neurons producing
local field potentials (LFPs). Animal studies using intracerebral
invasive recordings show that neural processes are coded
within the temporal structure of LFPs in the form of oscillatory
activity (OA). The information contained in OA has been
shown to be efficient in predicting animal behavior [Mehring
et al., 2003; Pesaran et al., 2002] or cognitive states [Gervasoni
et al., 2004; Pesaran et al., 2002]. It is therefore reasonable to
assume that similar information could be extracted from
human EEG traces, providing that we can estimate the tempo-
ral structure of field potentials based on scalp recordings.
We have developed a method allowing a noninvasive,

although coarse, estimation of field potentials from scalp-
recorded EEG data [Grave de Peralta Menendez et al., 2000].
This method, termed ELECTRA (see below), is based on the
neurophysiological properties of EEG generators and the fields
they produce [Grave de Peralta Menendez et al., 2004]. Simula-
tion studies [Grave de Peralta Menendez et al., 2000] and ex-
perimental findings [Gonzalez Andino et al., 2001, 2005; Grave
de Peralta Menendez et al., 2004; Thut et al., 2000] indicate that
this method can produce trustworthy estimates of the tempo-
ral structure of LFP. Since OA depends on the temporal struc-
ture of LFP, we hypothesized that accurate real-time decoding
of mental states might be possible based on this method. In
this investigation, the accuracy of OA estimates was assessed
using a visual recognition task in which healthy subjects were
asked to identify words (W), nonwords (NW), images (I), or
nonimages (NI), while EEG was simultaneously recorded
[Khateb et al., 2002]. We developed a procedure to select the
OA that best discriminated between the categories of visual
stimuli and then used this information to decode, on a separate
set of trials, the stimuli that were being presented to the sub-
jects. Given the correlation that has been observed between the
BOLD responses and the LFP oscillations in animals [Logo-
thetis et al., 2001; Niessing et al., 2005], we predicted that areas
yielding the highest discrimination in terms of OA between
the different types of stimuli would correspond to brain net-
works activated in similar tasks using fMRI paradigms.

MATERIALS AND METHODS

The dataset presented here was randomly selected from a
larger one that has been described in detail elsewhere
[Khateb et al., 2002].

Participants

Ten native French-speaking subjects (mean age 226 3 years,
five female) were included in this study. They were all right-
handed with normal or corrected-to-normal vision and had
given written informed consent as recommended by the eth-
ical committee of the Geneva University Hospitals. They
were all medication-free and had no history of neurological
diseases at the time of the experiment.

Experimental Paradigm

Four categories of stimuli were presented. They consisted
of either verbal or pictorial items. The verbal items were ei-
ther concrete imaginable high-frequency French words (W;
n ¼ 40; e.g., ‘‘train’’) or phonologically plausible nonwords
(NW; n ¼ 40; e.g., ‘‘prande’’). In the pictorial items, the stim-
uli selected from the Snodgrass and Vanderwart [1980] set
were either recognizable black-and-white drawings (repre-
senting living and nonliving items), referred to as the image
condition (I, n ¼ 40), or a scrambled unrecognizable version
of the same drawings referred to as the nonimage condition
(NI, n ¼ 40, see Fig. 1). Altogether, these stimuli provided a
set of 160 pseudorandomized trials.
Experiments were carried out in an isolated, electrically

shielded room. The stimuli were presented using a Power
Macintosh computer (17@ screen, refresh rate 67 Hz) running
MacProbe (v. 1.6.69, Aristrometics, Woodland Hills CA). Fol-
lowing the presentation of a fixation cross for 500 ms, the
stimulus was presented for 150 ms at the center of the
screen. Manual responses were collected for 1,300 ms follow-
ing stimulus onset leading to �2-s interstimulus interval.
Subjects had to decide as quickly and as accurately as possi-
ble whether the stimulus represented a meaningful word/
image or not. Responses were given by pressing a key with
the (right hand) index finger for words/images and with the
middle finger for nonwords/nonimages. Before the experi-
mental block, subjects underwent a training session in order
to ensure maximum comprehension of the task demands.
The EEG was recorded (using a 64-channel system, hard-

ware: M&I, Prague, Czech Republic; software: Neuroscience
Technology Research, Prague, Czech Republic) from 47
equidistant electrodes placed manually over the scalp
according to the extended 10/20 system [Khateb et al.,
2000]. The signals, recorded against Cz site at 500 Hz, were
recomputed off-line against the average reference. Filter set-
tings were between 0.15–250 Hz and the impedances were
kept around 5 kOhm.

Analysis Window and Data Preprocessing

Stimulus categorization necessarily operates on a single
trial basis, with subjects responding to the items one by one,
as they appear. Thus, to mimic this procedure using an auto-
matic system, the whole analysis must be based on single tri-
als. This differs from conventional EEG analysis, where off-
line data processing typically involves the rejection of epochs
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containing artifacts, interpolation of bad electrodes, baseline
correction, filtering, and finally averaging. Here, the analysis
procedure was applied directly to the epochs of EEG data as
they had been collected, without any off-line preprocessing.

Analysis Procedure

Here we use the term cognitive state to refer to the on-
going processing of a given stimulus in this task. Classifica-
tion of a cognitive state into one of two (or more) classes
involved several steps schematically shown in the block
chart represented in Figure 1. The whole procedure can be
roughly divided into the following five basic steps explained
below: 1) data recording and selection of epoch length; 2)
estimation of LFP using ELECTRA (eLFP) for all voxels and
epochs (trials); 3) power spectral density estimation for each
eLFP; 4) feature selections using the first half of the trials
(learning set); and 5) categorization of the cognitive state
over the second half of the trials (validation set).

Data recording and selection of analysis epoch length

Data recording procedures were described in the previous
section. The length of the window of analysis included the
period of presentation/categorization of the stimulus but
minimized the influence of motor responses. Based on the
shortest mean reaction time over subjects (W: 520 6 96 ms,
NW: 690 6 120 ms, I: 529 6 88 ms, NI: 564 6 60 ms), this
window was set between 0 and 500 ms after stimulus onset.
This selection ensured that all subjects had completed visual
object recognition within the defined period. In addition, the
selection of a fixed analysis window for all subjects consider-
ably facilitated the comparison between subjects and the
averaging of results, since it led to identical spectral resolu-
tion and frequencies for all subjects and conditions. Still,
some of the manual responses could have been included in
this window, particularly in the case of rapid response times.
To rule out the potential confound of classification based on
motor responses, we designed additional specific analyses.

Transforming scalp-recorded EEG data into
intracranial estimates of LFP

A technique widely used in signal processing to improve
automatic categorization consists in the projection of fea-
tures belonging to a low-dimensional space (the EEG in our
case) into a high-dimensional space so as to improve class
separability. While many different high-dimensional mathe-
matical spaces can be selected, we employed here the space
formed by the noninvasive intracranial estimates of LFP.
It can be seen intuitively that cognitive states stand a better
chance of being separated within this space than in the
space of the data originally recorded. This is obvious, as the
EEG data represents the overlapping, noisy spatiotemporal
activity arising from very diverse brain regions; i.e., a single
scalp electrode picks up and mixes the ongoing activity of
different brain areas. Consequently, temporal or spectral
features are merged on the same recording. For example, an
electrode placed on the frontal midline picks up the com-
bined activity of different motor areas (primary motor cortex,
supplementary motor areas, anterior cingulate cortex, and
motor cingulate areas) known to have different functional
roles. Transforming EEG into eLFPs aims to ‘‘deconvolve’’ or
‘‘unmix’’ the scalp signals, attributing to each brain area its
own temporal activity and leading to cleaner temporal/spec-
tral estimates. This approach differs from usual mathematical
transformations (e.g., ICA, PCA) since biophysical a priori in-
formation is incorporated that is not actually contained in the
EEG measurements. The first a priori information included
in the eLFP estimates concerns the fact that EEG measure-
ments are a convolution of the intracranial LFPs at each brain
voxel with a mixing matrix (the lead field). The latter ex-
presses how electric fields propagate from the brain to the
scalp. Further a priori information is incorporated through
the choice of one specific inverse solution (see below). This
information is neither contained in the original data, nor con-
sidered in pure mathematically based approaches.

Figure 1.

Block diagram of the analysis procedure employed in this study.

The whole procedure can be roughly divided into the five basic

steps enumerated in the diagram: 1) data recording and selection

of epoch length; 2) local field potential (LFP) estimation for all

voxels and epochs (trials); 3) power spectral density estimation

for each estimated LFP; 4) feature selections using the first half of

the trials (learning set); and 5) categorization of the cognitive

state over the second half of the trials (validation set).
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Scalp EEG was transformed into eLFP using a distributed
linear inverse solution termed ELECTRA [Grave de Peralta
Menendez et al., 2000, 2004]. ELECTRA selects a unique so-
lution to the bioelectromagnetic inverse problem based on
physical laws governing propagation of field potentials in
biological media. Such restrictions lead to a formulation
of the inverse problem in which the unknowns are the elec-
trical potentials within the whole brain, rather than the cur-
rent density vector. In simpler terms, ELECTRA allows an
estimation of the 3D distribution of electrical potentials (field
potentials) within the whole brain as if they were recorded
with intracranial electrodes. This is an important difference
between ELECTRA and other existing inverse solutions that
estimate the intracranial current density. Since the current
density is the first spatial derivative of the electrical poten-
tial, there is little sense in comparing current density-based
estimates with potentials recorded intracranially. We use the
term eLFP to denote the retrieved magnitude because ELEC-
TRA estimates field potentials using a local autoregressive
model [Grave de Peralta Menendez et al., 2004]. Autoregres-
sion aims to filter out the contribution of distant activity.
However, the LFP estimates obtained with ELECTRA should
not be confused with the LFPs recorded with implanted
microelectrodes in animals, since they differ considerably in
terms of spatial localization. Direct LFP recordings in ani-
mals integrate neural activity in the submillimeter range,
while ELECTRA estimates possess a spatial resolution that is
at best comparable to that of intracranial recordings in epi-
leptic patients.
Here we computed the ELECTRA inverse solution in a so-

lution space composed of 4,024 nodes (referred to as voxels)
homogeneously distributed within the inner compartment of
a realistic head model (Montreal Neurological Institute aver-
age brain). The voxels were restricted to the gray matter and
formed an isotropic grid of 6 mm resolution.

Power spectral density (PSD) estimation for each ELFP

The decoding of cognitive states can be attempted in the
time or the spectral domain. Here we chose to perform the
decoding in the spectral domain for the following reasons:
1) the temporal structure of actual field potentials (although
not the amplitude) seems to be correctly estimated by a lin-
ear inverse method based on sensitive constraints [Grave
de Peralta Menendez et al., 2004]; and 2) spectral estimates
depend on the temporal structure of the LFPs and have pro-
ven to be efficient in decoding cognitive states in animals
[Mehring et al., 2003; Pesaran et al., 2002].
In brief, for each individual subject the power spectral

density (PSD) was computed for all brain voxels and single
trials during the selected window using a multitaper method
with seven Sleepian data tapers. The multitaper method pro-
posed by Thomson [1982] provides a trade-off between mini-
mizing the variance of the estimate and maximizing the
spectro-temporal resolution. The application of tapers to the
data allows an estimation of power that is robust against
bias. This is particularly important for time series with a

large dynamic range. Hence, for the T ¼ 500 ms windows
used here, a bandwidth parameter of W ¼ 8 Hz and a var-
iance reduction by a factor of 1/7 was attained by using
seven Sleepian data tapers. Each 500-ms time series was mul-
tiplied by each of the tapers and the Fourier components
were then computed via FFT. The PSD was computed by tak-
ing the square of the modulus of these complex numbers cor-
responding to frequencies from 0 (DC) to 100 Hz.

Feature selections using the first half of the trials

(learning set)

Two cognitive states can be differentiated in the spectral
domain if their power spectral densities do not completely
overlap over trials for at least some voxels at a given fre-
quency. Thus, a first step before trying to classify the cogni-
tive states is to identify which voxels and frequencies (fea-
tures) provide the maximal discriminative power between
categories. The use of large feature sets leads to intractable
computational problems and degrades the performance of
the classifier if the features are redundant. Note that in our
case the data size under scrutiny for each subject is about
65,027,840 real numbers, i.e., the product number of brain
voxels � number of considered frequencies � number of tri-
als � number of categories.
In order to select the most discriminative features, the

whole set of trials was divided into two parts: 1) A feature
selection set composed of the first half of trials used to detect
the most discriminative features; and 2) A validation set
formed by the second half of the trials on which we inferred
the subject’s cognitive state using features extracted from the
selection set.
Many approaches to feature selection have been devel-

oped [Pal and Mitra, 2004]. These approaches can be roughly
divided into two types: filter and wrapper. Filter methods
select the best features over the training set, independently
of the classification algorithm or its error criteria. The idea of
filter methods is to rank the features according to some mea-
sure of their capability to separate the classes that are being
considered. A first ranking of the features can be obtained
from the probability values obtained after comparing the
classes statistically. However, statistical tests rely on central
tendency measures and thus have a propensity to assign
highly significant values to features that considerably over-
lap between classes. Thus, to select voxels and frequencies
producing significant differences between cognitive states in
the feature selection set, we employed here the discrimina-
tive power (DP) introduced in Gonzalez et al. [2006]. The
discriminative power is a measure graded from 0 to 100,
with zero representing complete overlap between classes (no
discrimination is possible) and 100 representing perfect sep-
aration. It quantifies the percentage of trials that can be read-
ily attributed to one of the classes based on a single feature,
i.e., one frequency at a single voxel. It thus estimates the
minimum correct classification rate that could be obtained
using a single feature. As shown below, the use of multiple
(independent) features yields substantial increases in classifi-
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cation rates. As with the relief method [Kira and Rendell,
1992] or the Fisher criterion [Bishop, 1995], the DP discards
possible interactions (redundancies) with other variables/
features. However, in contrast to these methods the DP
yields absolute bounded values that can be used to compare
different features. Nonetheless, the DP measure has some
limitations that are shared with other statistical methods
based on the distribution of extreme values, namely: 1) sensi-
tivity to outliers, and 2) possible failure for unbounded sup-
port distributions (taking values in the set [–?,?]).
Let’s denote by a(b) a feature vector for condition A(B),

i.e., a vector formed by the PSD over all trials for a single
frequency in condition A(B). By conveniently swapping vec-
tors a and b we can always assume that amin ¼ {minimum
of a} � bmin ¼ {minimum of b}. The DP is defined as the
capacity of the features vectors to distinguish the conditions
A and B and is defined as:

DP ¼ cardfa < bming þ cardfb > amaxg
cardfag þ cardfbg � 100

where card{.} stands for the number of elements in a set.
Under this definition, the DP denotes the percentage of

trials of conditions A and B that will be correctly identified
using as a separator the lines at the minimum value for
class b and the maximum for class a. All the values lower
than bmin obviously belong to class A. Similarly, all values
greater than amax belong to class B. If the two maxima coin-
cide then one class contains the other.
Through this analysis strategy we explicitly avoided choos-

ing the brain voxels where we expected consistent modula-
tion of OA with stimulus category. Instead, we used the dis-
criminative power for feature selection and evaluated a pos-
teriori the neurophysiological plausibility of the brain areas
identified. Thus, based on the feature selection set, we
selected for each subject the 150 most discriminative features
sorted by their discriminative power independently of their
spatial location or frequency range. Consequently, this proce-
dure allows two types of images to be created: 1) spectral
plots showing oscillations that strongly discriminate between
stimulus classes (DP vs. frequency); and 2) spatial plots
showing the brain voxels that better discriminate between
classes (DP vs. voxel position). Subsequently, we evaluated
the best 150 features over the validation set to categorize sub-
jects’ cognitive states.

Categorization of the cognitive state over the

second half of the trials (validation set)

The decoding of cognitive states was based on linear sup-
ported vector machines [Vapnik, 1995]. A support vector ma-
chine (SVM) is a supervised learning algorithm that ad-
dresses the general problem of classification by constructing
hyperplanes in a multidimensional space. We employed the
Matlab toolbox OSU-SVM (Matlab toolbox OSU-SVM 3.0,
available at http://www.eleceng.ohio-state.edu/?maj/osu svm).
To evaluate the possibilities of simultaneously decoding

multiple stimulus categories, we used a multiclass classifica-
tion procedure based on the one-against-all decomposition
[Ryan and Klautau, 2004]. Here the classification into four
classes is decomposed into four binary problems, solved
using supported vector machines. We also computed the
classification results for all pairs of categories (binary classifi-
cation). Binary classification was used to rule out the possi-
bility of classification based on motor responses rather than
on the subject’s perceptual categorization. Since the index
and middle fingers have different somatotopic cortical repre-
sentations, it is important to exclude classification based on
this irrelevant difference. This can be done by comparing
classification values between categories using the same or
different fingers for the responses. A second aspect that
might influence classification is the amount of overlap be-
tween a possible motor component and the analysis win-
dow. We therefore compared the classification values corre-
sponding to pairs of categories with similar mean reaction
times (e.g., I vs. W) with categories producing very different
mean reaction times (W vs. NW). If classification is influ-
enced by differences in motor responses within the window,
we would expect a much better binary classification in the
latter case, where the difference in the amount of motor
responses included is greater in comparison to the former
case, where the amount of motor responses within the win-
dow should be comparable. Consequently, similar binary
classifications for these pairs will be a strong indicator of
actual classification of categorical decision.
A randomized cross-validation procedure was used in

which decoding accuracy was defined as the percentage of
correct classifications in the output of the SVM procedure
(perfect ¼ 100.0, random guessing ¼ 25). Average accuracy
was computed over 100 repetitions of a procedure in which
90% of the trials in the validation set (VS) were used to train
the classifier. This classifier was then applied to the remain-
ing 10% of the trials.

RESULTS

Discriminative Power of eLFP oscillations

Individual discriminative power plots revealed consistent
patterns of OA over subjects that were modulated by the cat-
egory of the visual stimuli. This information is summarized
in Figure 2, which shows the average over subjects of the
maximum discriminative power over all brain voxels. These
plots provide information on the eLFP oscillations that best
serve to decode the different categories in view of their task-
related modulation. The NW-NI comparison showed the
highest discriminative power over subjects with 30% of the
samples decoded from a single frequency (6 Hz). However,
we observed systematic peaks at different frequencies for the
other categories, albeit with a lower decoding percentage.
Specifically, we observed that all comparisons involving
words showed a peak in the alpha band centered on 11 Hz.
Moreover, all comparisons involving explicit categorization
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of similar items (W-NW and I-NI) showed gamma band
peaks (around 40 Hz).

Decoding the Subject’s Cognitive States

Results for the multiclass classification are given in col-
umns six to nine of Table I. Behavioral data, i.e., percen-
tages of correct responses for each stimulus category, are
given in the first four columns to facilitate comparison. The
last four columns (10–13) of the table show, for each cate-
gory, the ratio between the percentage of correctly decoded
trials and the percentage of correct behavioral responses.
This ratio is important since in this task two different types

of behavioral errors can occur: 1) erroneous categorization
responses, and 2) incorrect manual responses (incorrect use
of the responding finger).
Decoding results were above 90% for the W and NI cate-

gories for all subjects. In the I category, decoding results
were lower than 90% in one single subject. The worst classifi-
cation results were observed for the NW category, in which
we also obtained the lowest rates of correct behavioral
responses. Interestingly, the amount of correctly decoded tri-
als surpasses, in some cases, the amount of correct responses
as indicated by their ratio. This effect was more pronounced
for subjects prone to commit behavioral errors in all catego-
ries (even those recognized easily) and is likely to be due to
incorrect manual responses rather than categorization errors.
As expected in a genuine ‘‘mind reading’’ procedure, the OA
derived from eLFP was more accurate and less influenced
by (voluntary or involuntary) subject errors.
An additional experiment was carried out to confirm that

decoding results were independent of the finger used for
the motor response. We selected pairs of categories in
which the responding finger was the same, e.g., W-I and
NW-NI, and we compared their binary classification rates
with those of categories where different fingers were used,
e.g., I-NI, W-NW. Paired classification results are given in
Table II. Decoding rates for binary classification were better
than for multiclass classification and totally independent of
whether the same or different fingers were used for the
response. A classification based on motor responses would
predict better results for categories involving different fingers
and worse results for identical fingers. In fact, we observed
the opposite effect. The worst classification was obtained for
the W-NW comparison, involving different fingers, while the
best overall classification was obtained for the NW-NI condi-
tion that required identical finger responses. Of particular in-
terest is the fact that, on average, the classification results for
W-I were identical to those for W-NW. This occurred despite
the comparable amount of motor responses included within
the period of analysis for the W-I condition, which showed

Figure 2.

Discriminative power (DP) as a function of frequency: plot of

mean over subjects’ DP as a function of frequency for all possible

contrasts between pairs of visual stimuli. The DP is a measure

between 0 and 100 indicating the amount of trials that can be cor-

rectly decoded using a single frequency and voxel in the brain. It

therefore provides a minimal bound (classification results increase

after combining multiple features) to decoding results.

TABLE I. Individual behavioral (C) and decoding results (D) for the four categories of visual stimuli

Subject

Behavior (% correct responses) Decoding (% correct classification) Ratio decoding/behavioral

CW CNW CI CNI DW DNW DI DNI RW RNW RI RNI

1 95 70 100 100 94 81 98 98 0.99 1.16 0.98 0.98
2 95 47.5 82.5 90 95 78 96 96 1 1.64 1.16 1.06
3 95 82.5 87.5 97.5 96 93 96 97 1.01 1.13 1.09 0.99
4 95 80 92.5 85 96 91 98 98 1.01 1.13 1.05 1.15
5 100 72.5 97.5 97.5 98 74 97 98 0.98 1.02 0.99 1.00
6 97.5 97.5 85 100 97 96 85 98 0.99 0.98 1 0.98
7 95 67.5 90 100 95 74 92 96 1 1.09 1.02 0.96
8 95 90 100 97.5 93 91 96 96 0.98 1.01 0.96 0.98
9 97.5 87.5 92.5 100 97 86 94 98 0.99 0.98 1.01 0.98

The first four columns indicate the percentage of correct manual responses obtained for each subject during EEG recordings. The middle
four columns give the percentage of correct classifications of the four different categories using the mind-reading approach described in
the text. Classification is obtained for a time window of 500 ms length using the power spectral density (PSD) at the 150 features detected
using the discriminative power measure. Last four columns give the ratio between the percentage of correct responses and the percentage
of correctly decoded trials. Chance level in decoding is 25%.
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similar reaction times. In contrast, in the W-NW comparison
a larger proportion of responses were included for W than
for NW (due to slower reaction times in the NW condition).
Therefore, the similarity in classification values renders very
unlikely an explanation in terms of the classification being
due to a greater or lesser amount of motor responses. Fur-
thermore, the best binary classification results were obtained
for the two stimulus categories that induced the slowest
responses (i.e., NW-NI) and in which the analysis window
contained a smaller amount of motor responses. The results
of the binary classification strongly support our suggestion
that the technique is able to decode the content of visual per-
ception without any influence of motor responses.

Discriminative Power of Different Brain Areas

The decoding results indicate that the temporal structure
of the estimated ELFPs allows the visual stimuli to be reli-
ably categorized. At the anatomic level, it is reasonable to
expect that areas where OA modulation gave rise to higher
rates of discrimination should coincide with the brain net-
works traditionally involved in the processing of such stim-
uli. To test this hypothesis, we constructed images where
we assigned a value of 1 to voxels and frequencies belong-
ing to the best 150 features used for classification. Averag-
ing over all frequencies in the 0–100 Hz range resulted in
individual images summarizing the contribution of each
voxel to the discrimination between pairs of categories.
Voxels that appear repeatedly (i.e., the same voxel that dis-
criminates at more than one frequency) were considered
only once. An example of this analysis is shown in Figure 3,
which illustrates the individual images for the W-I compari-
son. With reference to major brain regions involved in lan-
guage and reading (schematically drawn in the lower right
panel), our analysis shows that, despite some interindivid-
ual variability, the best 150 voxels cluster together around
regions that coincide well with classical language areas.
Paired categories were used to allow comparison with

other functional neuroimaging techniques (e.g., fMRI) that
usually rely on paired stimuli contrasts. To summarize infor-

mation over subjects we summed the individual images to
code in color the amount of subjects displaying the specific
effect at each area. Figures 4, 5, and 6 illustrate the results for
the different comparisons (respectively, W with I, I with NI,
and W with NW). In all panels the results are surface-ren-
dered onto a canonical brain using the MRIcro software. A
positive value was assigned if the average over trials of the
OA was higher for the first category and a negative value
when the mean spectral power was higher for the second.
Figure 4 shows brain voxels that best discriminated be-

tween W and I. Figure 4a shows the brain voxels where W
elicited more activity than I and 4b the voxels where I elicited
stronger activity than W. A left lateralization of discrimina-
tive voxels for W and right lateralization for I is observed.
Most discriminative voxels for W are contained within re-
gions that participate in the largely distributed language net-
work [Fiez and Petersen, 1998; Turkeltaub et al., 2003; Van-
denberghe et al., 1996] including the left superior temporal
and middle temporal lobe, the inferior frontal operculum, the
left angular, and the left supramarginal gyrus. A cluster of
voxels was observed in the left fusiform gyrus (not shown on
the cortical rendering). Best pixels for I are located at the occi-
pital lobe and right middle frontal gyrus, with most domi-
nant clusters located in bilateral parieto/occipital areas
[Grill-Spector, 2003; Spiridon and Kanwisher, 2002]. Bilateral
although somewhat right-dominant striate/extrastriate acti-
vation (not shown) was also observed.
Figure 5 shows the voxels that best discriminate between

I and NI. Figure 5a shows the brain voxels where oscilla-
tions increased in response to images. Major differences
were observed at occipito-parietal areas, with a strong clus-
ter around the left angular gyrus and a second cluster in
the inferior occipital gyrus [Grill-Spector et al., 1998;
Tanaka, 1997]. A tendency toward a left hemisphere lateral-
ization was observed in the occipital clusters, as well as the
weak frontal clusters. The NI condition elicited oscillations
(Fig. 5b) in the right and left lingual gyrus, the right supe-
rior temporal lobe, and the right parietal lobe. Globally, the
number of discriminative voxels belonging to the NI cate-
gory was smaller than for the I category, with little overlap
over subjects.
The most discriminative voxels for the W-NW compari-

son are shown in Figure 6. When comparing NW to W (Fig.
6b), a bilateral enhancement of oscillations in striate (not
shown) and extrastriate visual areas, as well as left occi-
pito/temporal areas was observed. Words (Fig. 6a) induced
a widespread increase in oscillations within the left tempo-
ral lobe (middle and inferior) and the inferior frontal oper-
cularis area [Booth et al., 2004; Fiez and Petersen 1998;
Simos et al., 2002]. Clusters of voxels were also observed in
the left insula and the left hippocampus (not shown). Note
that Figure 6a shares some resemblance with Figure 4a,
which depicts the words vs. images comparison. However,
the strong cluster in the left angular gyrus that appears in
the W-I contrast is absent in the W-NW contrast.
The temporal structure of ELFP was modulated in a repli-

cable manner over subjects at brain voxels known to partici-

TABLE II. Decoding results for pairs of visual stimuli

Subject W-NW I-NI NW-NI W-I

1 93.4 93.9 95.1 97.9
2 95.8 95.6 96.5 96.4
3 97.1 96.2 96.2 92.3
4 96 93.9 98.3 94.3
5 92.8 96.8 98.6 95.1
6 93.8 94.6 97.3 94.7
7 95.3 93.8 96 94.2
8 91.6 96.1 87.9 94
9 96.8 95.6 97.3 93.8
Mean 94.7 95.2 95.9 94.7

Values represent the percentage of trials attributed to the correct
category in the paired classification. Classification is obtained using
a linear support vector machine (SVM) over EEGwindows of 500 ms
length. Chance level is 50%.
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pate in the processing of these visual stimuli. More specifi-
cally, words and word-like recognition modulated oscillations
to a greater extent within the left hemisphere language-
related regions, while image recognition involved more
bilateral striate/extrastriate regions. However, it is impor-
tant to emphasize that these brain areas emerged here be-

cause of their importance in classifying the categories, and
were thus not established a priori.
These results therefore confirm that the processing of vis-

ual stimuli elicits changes in the strength of neural oscilla-
tions in brain areas participating in the task. Moreover,
modulation of OA is a physiologically reliable phenomenon

Figure 4.

Brain voxels that better discriminate between

words (W) and images (I). a: Voxels where words

elicited more oscillatory activity than images. b:

Voxels where images elicited stronger oscillatory

activity than words.

Figure 5.

Brain voxels that better discriminate between

images and nonimages. a: Voxels where images eli-

cited more oscillations than nonimages. b: Voxels

where nonimages elicited more oscillations than

images.

Figure 3.

Individual images showing the anatomical location of the best 150

voxels used for classification in the W-I condition. To construct

the image, we assigned a value of one to voxels and frequencies

belonging to the best 150 features used for classification and aver-

aged over the whole range of 0–100 Hz. The last right-most panel

shows a schematic drawing of the major brain regions linked to

language and reading. Note that despite some interindividual vari-

ability, the best 150 voxels cluster together around regions that

coincide well with classical language areas.
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that remains stable over trials and allows accurate decoding
of cognitive states over subjects as identified by the large
overlap observed in the most discriminative voxels.

DISCUSSION

We have shown that short EEG epochs of half a second
can be transformed into intracranial LFP estimates that
contain consistent information about the relative amplitude
of neural oscillations elicited at different brain areas. In
agreement with previous animal [Gray and Singer, 1989;
Pesaran et al., 2002] and human experiments [Klimesch
et al., 2004; Lachaux et al., 2005], we observed a stimulus
sensitive modulation of eLFP oscillations that can be used
efficiently to decode cognitive states. A number of different
roles have been attributed to the neural oscillations occur-
ring in different frequency bands. For example, gamma
oscillations (30–90 Hz frequency band) have been linked to
attention [Fries et al., 2001], to expectations and predictions
about upcoming sensory stimuli [Engel et al., 2001], to bind-
ing of distributed representations of perceptual objects
[Engel et al., 1991; Gray et al., 1990; Malsburg and Schnei-
der, 1986], and to episodic [Sederberg et al., 2003] and
working [Pesaran et al., 2002] memory. Likewise, alpha,
theta, or even very high frequency oscillations over 100 Hz
could encode different aspects of sensory-motor processes
[Edwards et al., 2005]. While our results contribute little to
the thorough understanding of the functional role of oscilla-
tory activity, they are nonetheless consistent with some of
the existing literature addressing such issues. In particular,
our analysis showed a high discriminatory power for the
gamma band when contrasting meaningful and meaning-
less categories was required, i.e., words vs. nonwords and
images vs. nonimages (Fig. 2). These results are consistent
with previous EEG findings that report differences in
gamma oscillations for W-NW comparisons [Pulvermüller,
1995] or figure background segregation [Gail et al., 2000;
Tallon-Baudry and Bertrand, 1999]. While we cannot rule
out that certain oscillations are epiphenomenal and serve
no clear function, our results reveal that at least part of the

OA can lead to a high level of decoding accuracy, thereby
arguing against such a hypothesis. The excellent accuracy of
decoding substantiates the reproducibility of our single trial
estimates of OA as a predictor of subjects’ mental states. The
fact that highly discriminating voxels occur across subjects
in brain regions similar (in terms of laterality and localiza-
tion) to those uncovered by other functional techniques dem-
onstrates that this method can efficiently estimate the fre-
quency content of eLFP within each brain area.
With the help of this novel neuroimaging technique, we

have been able to reproduce the decoding accuracy over short
temporal windows such as that classically obtained with
invasive recordings in animals. Consequently, these results
pave the way for promising research perspectives in the field
of neuroprosthetics, where real-time decoding of subjects’
intentions using a noninvasive technique is needed. Impor-
tantly, the analysis procedure proposed here can be easily
implemented on-line. Indeed, since the ELECTRA inverse so-
lution is linear, the noninvasive estimation of the eLFPs
amounts to a simple product of matrices. The subsequent
steps, comprising the PSD estimation and classification, re-
main those already in use for analysis of invasive data.
The transformation of scalp-recorded EEG into intracra-

nial field potential estimates passes through the resolution
of the electromagnetic inverse problem, which is known to
lack a unique solution. Theoretical studies on the use of lin-
ear inverse solutions to the bioelectromagnetic inverse
problem [Grave de Peralta-Menendez et al., 1998] point to
the fact that the lack of a unique solution must give rise to
an incorrect estimation of instantaneous source amplitudes.
This difficulty is circumvented in the analysis presented
here by relying on the temporal structure of eLFP (oscilla-
tions strength) rather than on instantaneous amplitude esti-
mates. While spectral estimates also depend on the source
strength, the analysis procedure used to decode cognitive
states relies on the comparison between categories of PSD
estimates at each voxel. Since the underestimation of the
source strength depends mainly on the distance between the
source and the sensors, this factor is similar for the same
voxel across stimulus categories. Therefore, the PSD differ-
ences between conditions should be mainly due to the spec-
tral modulation produced by the different stimulus types.

Figure 6.

Brain voxels that better discriminate between

words (W) and scrambled words (NW). a: Voxels

where words elicited more oscillations than non-

words. b: Voxels where nonwords elicited more

oscillations than words.
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Three reasons explain why the decoding accuracy com-
pares well with the one obtained from invasive methods in
animals. First, decoding of mental states in animals relies
on oscillatory activity rather than on LFP amplitudes. Sec-
ond, linear inverse solutions seem to provide adequate esti-
mates of the temporal structure of the intracranial field
potentials. Third, the inversion procedure incorporates in-
formation absent in the original EEG regarding 1) the mix-
ing matrix (lead field), and 2) the source model and the in-
tracranial field propagation laws (inverse solution).
Concerning the 500-ms time window used in this study,

one might ask whether smaller periods could be used with-
out losing decoding power. The answer obviously depends
on both perceptual and methodological aspects. From the
perceptual point of view, we require analysis windows,
which are long enough to include the subject perceptual
categorization. Considering that ERP differences between
W and NW occur at around 300 ms and between I and NI
at around 250 ms [Khateb et al., 2002], it can be argued that
epochs of 300 ms would comprise processes of perceptual
categorization and thus could still yield a comparable level
of decoding accuracy. From the methodological point of
view, we must take into account the fact that the use of
short analysis windows produce a loss of spectral resolu-
tion, thus constituting a shortcoming if sharp frequency
tuning is used to encode information about the stimulus.
However, electrophysiological studies in animals and
humans suggest that LFP tuning takes place over frequency
bands rather than discrete frequencies. Therefore, the mini-
mal length of the analysis window seems to be constrained
by the speed of human perception and information process-
ing rather than by methodological issues. The study of Gon-
zalez et al. [2006] supports this view by showing that
decoding of the laterality of impending hand movements
can be carried out on the basis of temporal windows of a
duration shorter than 200 ms.
The methodology described here could have applications

that extend beyond the problem of ‘‘mind reading.’’ Indeed,
it provides simultaneous information about: 1) the range of
frequencies where OA maximally differ between pairs of
experimental conditions as measured by the discriminative
power; 2) the brain areas where OA differ over subjects
using individual 3D images (although these images are of
lower spatial resolution than those produced by fMRI, they
have the advantage of reflecting the neural origin of oscilla-
tory activity that cannot be studied by hemodynamic tech-
niques); and 3) the consistency of the OA (evaluated by the
classification) across single trials, which would approach
chance if areas and oscillations were incorrectly estimated.
Accordingly, this procedure exploits the full spectral infor-
mation contained in single trials to construct a single statis-
tical image of OA for each individual subject, thus allowing
single subject (or patient) analysis. It therefore addresses a
relevant point in current neuroscience: going from mere
localization of function to actual brain functioning, which is
inherently based on single stimuli processing rather than
averages [Makeig et al., 2002].
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