
Discussing the Capabilities of Laplacian Minimization

Rolando Grave de Peralta Menendez* and Sara L. Gonzalez Andino*

Abstract: This paper discusses the properties and capabilities of linear inverse solutions to the neuroelectromagnetic inverse problem obtained under
the assumption of smoothness (Laplacian Minimization). Simple simulated counterexamples using smooth current distributions as well as single or
multiple active dipoles are presented to refute some properties attributed to a particular implementation of the Laplacian Minimization coined
LORETA. The problem of the selection of the test sources to be used in the evaluation is addressed and it is demonstrated that single dipoles are far
from being the worst test case for a smooth solution as generally believed. The simulations confirm that the dipole localization error cannot constitute
the tool to evaluate distributed inverse solutions designed to deal with multiple sources and that the necessary condition for the correct performance
of an inverse is the adequate characterization of the source space, i.e., the characterization of the properties of the actual generators.
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Introduction
The localization of the generators of the electromag-

netic activity of the brain, i.e., the solution of the
neuroelectromagnetic inverse problem, is an alternative
to imaging brain functioning. The efforts devoted to the
solution of this mathematical problem have recently
grown as witnessed by the increasing number of publica-
tions and presentations on this topic. In brief, this problem
has infinite solutions and for that, it is called an ill-posed
problem. To gain in uniqueness some supplementary a
priori information has to be added. There are multiple ex-
amples of linear and non linear constraints which have
been already used in this inverse problem ranging from
the single dipole fitting to a global framework encompass-
ing spatial and temporal restrictions. A question remains
open: Is there any solution that can be considered as supe-
rior to the others for the analysis of arbitrary data sets? Al-
though the answer to this question seems to be clear for
mathematically oriented authors, (see Fuchs et al. 1994;
Greenblatt 1994; Mosher and George 1994; Valdes et al.

1994; Hamalainen 1995; Nunez 1995; Ilmoniemi 1995),
other authors attribute special properties to a solution that
relies in smoothness as a constraint (LORETA). Even
though these properties were the subject of an extensive
discussion in the special issues of ISBET Newsletter:
ISBET Newsletter No. 5, 1994 (IN94) and ISBET Newslet-
ter No. 6, 1995 (IN95), the debate mainly concentrated on
theoretical arguments which are non necessarily well un-
derstood by non mathematical readers. Thus, the main
goal of this work is to discuss the main properties of
LORETA by means of simple simulations intended to
reach potential users of inverse solutions who lack a for-
mal background in mathematics.

Smoothness is a natural and elegant mathematical
way to solve ill-posed problems extensively used during
this century (see Wahba 1990 and references therein).
Many textbooks refer to this technique in the particular
context of inverse problems (Tihonov and Arsenin 1977;
Golberg 1978; Groetch 1984). Smoothness have been also
considered for the solution of bioelectromagnetic inverse
problems, e.g., Huiskamp and van Osterom (1988),
Messinger-Rapport and Rudy (1988), van Osterom
(1992), Pascual-Marqui et al. (1995), Wagner et al. (1996),
Grave and Gonzalez (1998), Fuchs et al. (1999) among
others. The rationale behind this regularization tech-
nique is that the uncertainty in the unknown function can
be replaced by some a priori information (smoothness)
that imposes a structure on the solution.

A common way to measure the smoothness (or
roughness) of a function is through the evaluation of de-
rivatives of different order, e.g., first order (gradient), sec-
ond order (laplacian and mixed partial derivatives), etc. A
formal framework using arbitrary differential operators
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and their associated weighting functions as well as other
approaches to smoothness based on general interpolation
rules can be found in Grave and Gonzalez (1999). Under
the smoothness constraint, the values of the unknown
function are related and thus the problem can have a
unique solution. Even if the solution is unique, this con-
straint does not necessarily reflects actual features of the
sources but constitutes a mathematical palliative to the
lack of information about their properties.

In LORETA, smoothness is implemented via a
minimization of a non-singular Laplacian of the weighted
unknown. Up today there are no neurophysiological evi-
dences to justify this weight selection or the use of the
smoothness constraint for characterizing neural currents.
In spite of that, LORETA is claimed to be the only
tomographic linear inverse solution capable of localizing
in 3D the generators of the brain electromagnetic activity.
This is concluded after analyzing the properties of
LORETA for the retrieval of isolated dipolar sources and
applying the apparently sound reasoning that a solution
unable to localize isolated dipoles at any depth have to
fail for the localization of the neurophysiological genera-
tors. The last two simulations of this paper shed light on
the inexactness of this point which is a crucial aspect in
the design of strategies for solving this inverse problem. It
is shown that the simple minimum norm perfectly re-
trieves a generator configuration for which LORETA
fails. This example is used to support the conclusion that
the only reasonable manner of designing inverse solu-
tions is the mathematical characterization of the physi-
cal/neurophysiological properties of the source space.
For instance, a reliable solution does not need to localize
isolated generators at any depth if the purpose is to de-
scribe simultaneous neurophysiological sources confined
to the cortical mantle.

This paper starts describing the simulation condi-
tions considered, namely, the sensor configuration, so-
lution space and source and head model. The selected
conditions are propitious for the adequate performance
of any inverse solution. The second section enumerates
the presumed features of LORETA and illustrates by
simple counterexamples that these conjectures do not
hold. Some simulations are intended to illustrate limita-
tions to consider when interpreting inverse maps asso-
ciated to real data while others are selected to bring the
discussion upon specific aspects such as inverse solu-
tions evaluation and design.

Materials and Methods
The following simulations and examples consider

data identical to those described in IN94 and IN95. The
whole configuration is briefly described below.

Head model

Three-shell spherical model representing the scalp,
the skull and the brain. The origin of coordinates is
placed at the center of the spheres. A right hand oriented
system is used with X-axis increasing from innion to
nasion and Y-axis increasing from left to right ear. The
external (scalp) radius is one.

Sensor configuration

148 electrodes located on the scalp surface, extend-
ing lower than the upper half of the sphere.

Solution Points (source space)

The solution space is formed by 817 solution points
homogeneously distributed in 10 axial (orthogonal to
Z-axis) slices within the innermost head model compart-
ment (radius=0.8).

Data

All the data used in the simulations were kindly pro-
vided by Pascual-Marqui. The data include the 817 solu-
tion points, the Lead field matrix and the Inverse
matrices for the Mimimun Laplacian (LORETA) and
Minimum Norm (MN). All the modeling aspects that can
influence the simulations, namely, volume conductor
model, sensor positioning, conductivity profile and mea-
surements are assumed perfectly known and accurate
(up to the floating-point arithmetic used). None of the ex-
amples takes into account noise or imperfect knowledge
of the parameters. Sources at intermediate positions, i.e.,
at sites not coincident with one solution point are dis-
missed since this is equivalent to include noise in the
measurements. Trivially, all the simulation conditions
selected are unrealistically propitious for the adequate
performance of an inverse solutions and thus any limita-
tion detected can only worsen in a more realistic situa-
tion, e.g., less sensors, noisy data, etc. Also, note that the
sensor distribution covers a scalp area that extends be-
low the brain (source space) which is rarely the case in
many clinical or experimental setups. While the simula-
tions are restricted to the case of electric measurements,
there is no theoretical reason to expect different results
for the magnetic case.

In what follows the term test source is used to denote
an isolated dipole at a given solution point with its dipolar
moment parallel to one of the Cartesian axis. At each solu-
tion point, there are three test sources of unitary dipolar
moments (1,0,0), (0,1,0) and (0,0,1) respectively. Each col-
umn of the lead field matrix coincides with the potential
produced on the whole electrode array by one of the test
sources. Consequently, the scalp potential produced by
the three test sources associated to the p-th solution point

98 Grave and Gonzalez



is given by the lead field columns (p-1)*3+k with k=1,2,3.
In all the simulations described in next section this nota-
tion is adopted to indicate the exact test sources used to
generate the measurements. For instances, a reference to
the test source 1152 indicates a dipole placed at solution
point 384, oriented parallel to the z-axis (k=3).

Results and discussion
The presumed properties of  LORETA are:

C1) "LORETA’s main property": "if the actual source is
exactly a single dipole, then LORETA produces a 3D
blurred image of the point conserving the original loca-
tion" (IN94, page 6)
C2) "With LORETA… maxima indicate real sources, but
possibly blurred" (IN94, page 22).
C3) "General form of LORETA’s main property": "due to
the principle of superposition, LORETA produces a
blurred image of any arbitrary 3D source distribution"
(IN94, page 6).
C4) "If the actual 3D source distribution is neuro-
physiologically smooth, then LORETA can recover it ex-
actly" (IN94, page 7).
C5) "If the actual 3D source distribution is not
neurophysiologically smooth then LORETA produces a
blurred version" (IN94, page 7).

In what follows simple counterexamples refuting
conjectures C1-C5 are presented. Other source configura-
tions for which the same difficulties hold are indicated
also in the text. All the figures depict the modulus of the
current density vector over the set of solution points form-
ing each slice. The slices are plotted as seen from a top
view (axial slices, viewed from Cz=[0,0,1]) and ordered
from bottom to up. The uppermost slice is constituted by a
single point. No interpolation is used in the plots.

Properties C1 and C2

For the discussion of C1 and C2, it is enough to con-
sider single sources. A solution, for which these two
properties hold, will reconstruct an arbitrary test source
as a spot (due to the blurring) around the correct location.
Such solution cannot produce ghost sources since this
would correspond to a maximum not associated to a real
source (C2). Figure 1 shows that this is not the case for test
source 133 (figure 1a), where the reconstruction (figure
1b) clearly show two maxima and none of them is located
at the correct place. Note that some graphical interpola-
tion might mask the presence of these ghost sources. Ad-
ditional examples of ghostly reconstruction can be
mentioned, namely, test sources 101, 103, 104, 106, 109,
124, 127, 130, 133, 134, 136, 139, 2410, etc. Still these exam-
ples do not exhaust the list.

Property C3

Since statement C3 refers to arbitrary source distribu-
tions, we can consider an example with two single test
sources. Figures 1c and 1d show the real distribution and
the reconstruction provided by LORETA for test source
1960, while figure 1e and 1f depicts the same for test source
2310. Figure 1h shows the reconstruction when both (1900
and 2300) test sources are simultaneously active. The real
distribution is depicted in figure 1g. It is clear that even
when the positions (but not the amplitude) of both test
sources are approximately retrieved when acting alone, the
simultaneous reconstruction (figure 1h) suggests the exis-
tence of only one source, i.e., there is a lost source. This hap-
pens because the strengths were incorrectly estimated by
the inverse. In addition the reconstruction of 1900 and 2300
together (figure 1h) is not equal to the sum of the maps re-
constructed in figures 1d and 1f, since the principle of su-
perposition does not apply for the maps of the modulus, as
presumed in C3. There exist a huge amount of examples
composed by two or more test sources that are poorly re-
trieved by LORETA. As a rule of thumb, test sources of sim-
ilar intensity but different eccentricities suffer from this
limitation as shown in Grave and Gonzalez (1998). As it is
the case for other linear inverse solutions, there are pairs of
sources that can be fairly well reconstructed.

These two unavoidable drawbacks, i.e., the exis-
tence of ghost and lost sources, impede LORETA to fulfill
C1, C2 and C3, and thus not even a "blurred image" can
be guaranteed for all single test sources and obviously
neither for an "arbitrary 3D source distribution".

A point to discuss here is if whether these limitations
arise because isolated dipolar sources are "the worst test
case" for a distributed solution based on smoothness. To
answer this question, consider the intuitive (non-
mathematical) idea of smoothness. Roughly speaking
smoothness expresses that the solution should have very
similar values everywhere except for sites where the mea-
sured data (EEG/EMG) force a difference. The test sources
used here and in IN94 and IN95 consider a distribution
composed by zeros everywhere except for one point where
the value is one, that is, (0,…,1,...,0). Thus, there is only one
point where the hypothesis of smoothness is not fulfilled.
It is not difficult to see that a distribution composed by two,
three or more simultaneously active test sources is less
smooth. Consequently, a difficult test case should contain
a distribution of sources alternatively distributed over the
whole solution space since generally the performance of
linear inverse solutions deteriorates with the increase in
complexity of the source distribution.

Properties C4 and C5

Consider a source distribution d1 which is zero ev-
erywhere except at the component 456 where the value is
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Figure 1. a) Original source distribution for test source 133. b) Reconstruction obtained with LORETA for (a). c) Original
source distribution for test source 1960. d) Reconstruction obtained with LORETA for (c). e) Original source distribution for
test source 2310. f) Reconstruction obtained with LORETA for (e). g) Original source distribution for test sources 1960 and
2310. h) Reconstruction obtained with LORETA for the two sources showed in (g). i) Original source distribution d1 corre-
sponding to test source 456. j) Reconstruction obtained with LORETA for (i). The color scale goes from blue to red with blue
representing the minimum of the modulus and red the maximum.



one, i.e., d1=(0,0,0…,1,…0,0,0). Adding one to all elements
in d1 produces a distribution d2=(1,1,1…,2,…1,1,1), with
ones everywhere except at component 456 where the
value is two. Both distributions have the same profile
(landscape) and exactly the same degree of smoothness
for a measure that does not depend on a DC level. There is
a constant background value, and one source (456) that ex-
ceed this background in one. Figure 1i depicts distribution
d1 (test source 456) and figure 1j its reconstruction by
LORETA. Figures 2a and 2b show distribution d2 and
LORETA’s reconstruction respectively. While d1 and its
reconstruction seems adequate, the pattern retrieved by
LORETA for d2, is quite different an inaccurate. This leads
to the question: If smoothness is the property that allows
retrieving correctly d1 why does it fail for d2?

The answer to this question resides on the fact that in
d1 there is only one active source while in d2 multiple
sites light up together. This is why, when analyzing a dis-
tributed solution, it is necessary to measure the influence
in the reconstruction of one source of all possible active
sources elsewhere. This influence can be measured by
means of the concept of resolution kernels derived by
Backus and Gilbert (1968) for the geophysical inverse
problem. Definition, applications and intuitive descrip-
tion of resolution kernels to the bioelectromagnetic in-
verse problem can be found in Grave et al. 1996, 1997;
Lütkenhöner and Grave 1997. While in d1 (isolated
source) all other test sources are silent and thus we can
neglect the resolution kernels, when considering d2
(multiple active sources), the amplitudes of the resolu-
tion kernels dramatically influence the reconstruction.

Another example of multiple test sources that can-
not be properly retrieved by LORETA is the (smooth)
constant distribution, that is, d=(1,1,1…,1,…,1,1,1). Fig-
ures 2c and 2d show the original distribution d and the
reconstruction provided by LORETA. Note the similar-
ity with the reconstruction of previously described d2
shown in figure 2b. In fact, we have found that when the
number of test sources are near/over the number of sen-
sors and the sources are uniformly distributed, LORETA
produce the same fixed pattern. This pattern coincides
with that of figures 2b and 2d. Note that this example also
disproves conjectures C4 and C5, since d is a smooth dis-
tribution (perhaps one of the smoothest that exist) that
cannot be reconstructed by LORETA.

Conjectures C4 and C5 can be refuted on a more rig-
orously way. In Grave and Gonzalez (1998), a general re-
sult is proved, that for the particular case of smoothness
reads: Even when a solution aims to retrieve smooth
sources, there are non-silent smooth sources that cannot
be retrieved. Without coming into the mathematical de-
tails, the proof is based on the fact that for any inverse dif-
ferent to the Minimum Norm, e.g. LORETA, there is an
orthogonal space that contains non-silent sources, i.e.,

the projection of these source distributions over the col-
umns of the inverse is zero! In other words, the recon-
struction provided by LORETA is orthogonal to the
original distribution and thus, LORETA cannot retrieve
these smooth source distributions.

Figures 2e, 2f and 2g, 2h, present respectively the
real distribution and the reconstruction for two smooth
source distributions, namely J(x,y,z)=(z,x,y), and
J(x,y,z)=(x2,y2,z2). Note that both source distributions
have minima within the brain and tend to grow when ap-
proaching the cortex (see figures 2e and 2g) which is far
from being a non-plausible neurophysiological distribu-
tion. Still in the reconstruction (figures 2f and 2h) the po-
sition of the maxima and minima are exchanged. This
effect is due to the Laplacian (singular or not) that penal-
ize the activity at the borders of the grid (cortex) while fa-
voring maxima at interior points. This confirms again
that C4 does not hold, i.e., it is not true that "LORETA can
recover exactly" all the smooth source distributions. If
this happens for some smooth distributions, which are
favored by the solution, it is obvious that the quality of
the reconstruction cannot be granted for arbitrary
non-smooth distributions, and thus, C5 cannot hold.

To summarize we can say that the Minimum
Laplacian solution, as any linear inverse solution, suffers
from some limitations, namely:
a) It is not possible to estimate correctly the position and
the strength of all single test sources.
b) Ghost and lost sources can affect the reconstruction
even for the case of very simple configurations, e.g., iso-
lated dipoles (test sources).
c) Because of (a) and (b), neither maxima indicate all the
time real sources, nor minima stand always for silent re-
gions.
d) The reconstruction of arbitrary source distributions
will be perfect if and only if the original source distribu-
tion belong to the space generated by the columns of the
inverse. The farther are the sources from this space the
poorest is the reconstruction.

These results reflect the difficulties inherent to the
solution of the bioelectromagnetic inverse problem, i.e.,
determination of a three components vector at a large
number of solution points with a very small set of mea-
surements. With this scarce information, it is possible to
essay to optimize the estimation of single test sources in
terms of position and strength. This alternative looks ap-
pealing because this is a sufficient condition for the good
performance of an inverse. Still the measurements are
not informative enough to reach this goal as illustrated
by these simulations and a large collection of theoretical
results (Backus and Gilbert 1968; Menke 1989; Grave de
Peralta and Gonzalez 1998.),

To see that a low dipole localization error alone is
not a necessary condition for a good performance, con-
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Figure 2. a) Original source distribution d2 obtained by adding one to all components of d1. Distributions d1 and d2 have
similar plots and the same degree of smoothness. b) Reconstruction obtained with LORETA for distribution d2. c) Original
source distribution d corresponding to a constant source distribution. d) Reconstruction obtained with LORETA for the con-
stant distribution depicted in (c). Note the similarity between the reconstructions (b) and (d) associated to two different
original distributions (a) and (c). e) Original smooth source distribution J(x,y,z)=(z,x,y). f) Reconstruction obtained with
LORETA for the smooth distribution in (e). g) Original smooth source distribution J(x,y,z)=(x2,y2,z2). h) Reconstruction ob-
tained with LORETA for the smooth distribution in (g). i) Original source distribution obtained adding the columns 20 to 30 of
the MN inverse matrix. Coincides with the reconstruction obtained with the MN solution. j) Reconstruction obtained with
LORETA for the source belonging to the column space of the MN inverse matrix depicted in (i).



sider the following example. Let be G (for good) and B
(for bad), two inverse solutions such that G retrieve ap-
proximately all single source location while B yields to
poor dipole localization errors (e.g., Minimum Norm). If
the actual generators are arbitrary combinations of the
columns of B, the performance of B will be perfect while
the performance of G cannot be predicted. It will depend
on the projection of the real distribution on the subspace
determined by the columns of G. Obviously, the perfect
performance of B refute the hypothesis that low dipole
localization error is "a necessary condition for correct lo-
calization in general", and thus disqualify the dipole lo-
calization error as a basic tool to predict the performance
of a distributed inverse solution. Figures 2i and 2j illus-
trate this situation for LORETA and the Minimum Norm
solution (MN). Figure 2i corresponds to the original
source distribution, created as a sum of 10 columns of the
MN inverse matrix (columns 20 to 30) and obviously co-
incides with the reconstruction provided by MN. Figure
2j presents the reconstruction provided by LORETA. The
images clearly show that LORETA fails estimating this
source distribution independently of its behavior for sin-
gle sources. This example allows concluding that it is
better to characterize the subspace that better explains
the sources than to concentrate the efforts in reducing the
dipole localization error for single sources alone. Note
that we are not telling that Laplacian minimization (or
LORETA) is optimal for dipole localization. For latter
purpose methods better suited than distributed inverse
solutions exist already.

Let us remark that the expression "characterize the
subspace that better explains the sources" is not a general
philosophical truth but a goal of many research groups.
There are an increasing number of papers that combine
different neuroimaging techniques, e.g., fMRI and inverse
solutions, or impose restrictions on the temporal behavior
of the generators. In Grave et al. 2000, the generators are
restricted to be irrotational which are the sole currents re-
sponsible for the generation of electric scalp maps. This so-
lution called ELECTRA might fail if tested for single test
sources. Still the underlying physical model of the genera-
tors (intracranial potentials) is of undeniable validity
when dealing with electric measurements (EEG, ERP).
Such solution has therefore bigger chances to succeed
with electrophysiological data. In summary, the strategy
to design and evaluate inverse solutions has to be conse-
quent in the sense that a solution designed to optimally re-
trieve a certain neurophysiological feature of the sources
should not be evaluated in terms of its localization proper-
ties for isolated dipoles. The contrary also hold, a solution
"optimal" for isolated single dipoles could be far from
optimality when dealing with neurophysiological genera-
tors. The current dipole is an approximated description of
the electrical process occurring at a microscopic level

which has proven to be helpful in many data analysis but
which can neither constitute the golden rule to evaluate
inverse solutions nor necessarily the best model to de-
scribe neurophysiological generators at the level of
intracranial recordings (Alarcon et al. 1994). In summary,
even if distributed inverse solutions are doomed to failure
for arbitrary, mathematically constructed source distribu-
tions this is not necessarily the case for the actual brain
generators.

Conclusion
This paper discussed the capabilities of a linear in-

verse solutions obtained under the assumption of smooth-
ness (Laplacian Minimization). Clear counterexamples are
shown to illustrate that the presumed features of one im-
plementation (LORETA) of this general principle do not
hold. The selection of test cases is also discussed and it is
shown that single dipoles are far from being the "worst
case test" for a smooth solution. It is finally shown that
while smoothness can be an effective constraint for retriev-
ing isolated sources, it can fail for patterns with the same
degree of smoothness but composed by multiple active
sources. The use of the dipole localization error as the
golden rule to evaluate and design distributed inverses is
criticized. The conclusion derived from this paper is the
necessity of a mathematical characterization of the
subspace that contains the neurophysiological generators
as the most reasonable alternative to design solutions to
the bioelectromagnetic inverse problem.
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