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Abstract: This report describes the theory of Backus and Gilbert with special emphasis for the case of
vector fields as required for the solution of the electromagnetic inverse problem. A description of the
method is presented with the detailed mathematical derivation of the coefficients that determine the
solution for the retrieval of vector fields. Such derivation, to our knowledge, has never been reported in the
literature. We also identify some crucial points that can (and had) lead to misuse of this solution and
describe some disadvantages of this theory for the case of vector fields suggesting some alternatives to deal

with them. Hum. Brain Mapping 7:161-165, 1999.
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INTRODUCTION

The necessity of solving the linear inverse problem
with discrete data appears on several fields of applica-
tion. One example is the determination of the current
distribution within the human brain from scalp-
recorded electric and/or magnetic data. One of the
multiple alternatives that exist to solve the bioelectro-
magnetic inverse problem is the Backus and Gilbert
(BG) method. The basic idea of the BG method, already
applied in bioelectromagnetism [Robinson and Rose,
1992; Grave de Peralta et al., 1996; Litkenhonner and
Grave de Peralta Menendez, 1997] is to try to achieve
the maximum spatial resolution at each site from the
available data.
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The basic elements of the Backus and Gilbert theory
appeared in three articles: Backus and Gilbert [1967,
1968, 1970]. This report emphasizes the exposition of
the method for the retrieval of scalar fields. Although
the estimation of vector fields was briefly mentioned in
Backus and Gilbert [1968], this problem has since
received little attention. Since the bioelectromagnetic
inverse problem is usually stated in terms of the
current density vector, the application of this method
requires a careful analysis because the extension of this
theory to vector fields is not completely straightfor-
ward as was suggested in Grave de Peralta et al. [1996].
This is evident from some erroneous derivations of the
method that have already appeared in the literature. In
addition, some disadvantages of this theory have been
identified from application to the retrieval of vector
fields [Grave de Peralta Menendez et al., 1996, 1997a].

Here, we briefly present the BG theory with special
emphasis on the case of vector fields. We offer a
detailed description of the procedure to compute the
coefficients that determine the BG solution, which to
our knowledge has not been described before in the
literature. We note the inconveniences of this method
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together with alternatives to circumvent them. Pos-
sible mistakes that might or have been already commit-
ted in the application of the method to the case of
vector fields are also described.

BASIC EQUATIONS

Boldface uppercase letters indicate matrices, and
boldface lowercase letters denote vectors.

The Backus and Gilbert method is an alternative
inversion procedure for the linear inverse problem
with discrete data determined by the system of linear
equations:

d=[Lwojwdr i=1..N, 1)

where d; represents the i-th measurement obtained
after the integration over region R of the product
between the lead field function 1;(r) and the unknown
function j(r). The symbol (0) represents the internal
(scalar) product between vectors, and N; stands for the
number of measurements.

A well-known theorem of functional analysis from
Banach states that if the inverse of a linear operator
exists, it also will be a linear operator. On this basis, if
the inverse operator determined by the system of
equations (1) has an inverse, it can be written as:

Ns

j(rp) = ) €i(rp)d; 2)

i=1

Since j(rp) is a vector field of dimension, n (e.g.,
n =1, 2, 3), equation (2) makes sense only if the coeffi-
cients ¢;(ry) are vectors of the same dimension as j.
Note the dependence of the coefficients on the solution
point 1. In this way the problem is reduced to the
selection of the functions c;(ry), that express the linear
relationship between the measurement data vector
and the solution at point r,.
Substituting (1) into (2) gives:

Ng
i) = J, 2 it ® L(nj(dr = [{ Alro Djr @)

where ) stands for the external product between
vectors and the kernel of the resolution operator
determined by the # by n matrix:

N,
A(ry, V)= 21 ¢i(r) ®L(®) (4)

is called the averaging or resolution kernel. The key
point of the Backus and Gilbert theory [1968] is the
selection of the coefficients ¢; by optimizing a function
of the resolution kernel A(ry, r) that measures its
“deltaness” subject to an auxiliary unimodularity con-
straint.

It is important to note that finding the coefficients for
each target point r;, according to equation (2), will
determine a function all over the solution space. In
general, such a function will not fulfill the system of
equations (1), although as noted from equations (2)
and (3), each particular value j(ro) is a weighted
average shared by all the solutions. For this reason
some authors refer to the BG method as one of solution
appraisal, or to estimate the information content of the
given data set instead of a method for solution construc-
tion.

Scalar fields

For simplicity, we first consider the one-dimensional
case, i.e., when the dimension of vectorjis 1 (n = 1). In
that case, a general analysis can be carried out consid-
ering the following measure of closeness between the
delta function and the resolution kernel A(r, r).

min ] [A(ro, 1) = 8 ( — DI*Wi(zo, )dr

= min [ [A%(t 1) + 82(zo — 1
— 2A(rg, 1)d(rg — 1)]W(rp, )dr  (5)

Using the standard formalism for the delta function
[Roach, 1970] and considering only terms that depend
upon the unknown coefficients, problem (5) is equiva-
lent to:

min J; A?(ry, t)W(r,, 1)dr — 2A(ry, 1o )W(ry, 1)
(6)

From this expression, the typical criteria for the selec-
tion of the coefficients, can be derived. If W(ry, rg) = 0,
then an additional condition is needed to obtain the
“classical” BG method as often described [e.g., Backus
and Gilbert, 1968, 1970; Grave de Peralta Menendez et
al., 1996]. It corresponds to the so-called Q-criterion:

min [ A¥r OW(n dr st [ A =1 ()

Here, it is important to discuss the selection of function
W. After having pointed out that several alternatives
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are available, Backus and Gilbert [1968] defined the
nonpathological weight function W as a monotone
function of the distance between the two arguments
and such that does not become constant with the
increase of this distance and such that W(r, r) = 0. They
concluded that if the solution obtained for A with a
nonpathological weight W does not resemble a blurred
delta function, then none of the linear combinations of
the 1;(r) will be near to the delta function and thus it is
not possible to obtain an approximation to an average
near the target point r, from the given data.

A second alternative called the D criterion corre-
sponds to the case of constant weighting function, i.e.,
W(x,, 1) = constant. Because of the metric associated to
it, it is also called the least-square criterion and is
determined by the following optimization problem:

min . A 1) — 5(r, O]2dr
= [ A0 ndr - 2800 1) ®)

It is not difficult to check that the solution obtained
corresponds to the minimum norm solution as de-
scribed in the appendix of Backus and Gilbert [1968],
Tarantola [1982], and others. In practice, some authors
modify this criterion, including the unimodularity
constraint as in (7) [Oldenburg, 1981].

A third criterion is the so-called S method and
corresponds to minimize the difference between A and
the delta function in a determined Sobolev space. It is
not considered here.

Vector fields

The following optimization problem is a natural (but
not unique) extension of problem (5) to the case of
vector fields:

min [ |A@ 1) - 185 — )P Wt )~ (9a)
With the auxiliary constraints (when needed):

J A idr=1 (9b)

where I represents the identity matrix and [ X|| repre-
sent the Frobenius norm of matrix X, i.e., the sum of all
the elements of X squared.

Expresion (9a) was considered for the discrete case
in Grave de Peralta Menendez et al. [1997a]. There, we

proved that for the case of a constant weighting
function, i.e., W(r, r) = constant, there is no need for an
additional constraint and the solution obtained corre-
sponds to the minimum norm solution and not to the
Backus and Gilbert solution. This mistake appeared in
Riera et al. [1997] where the authors attempted to
compare the BG method with the minimum norm, but
derived the BG solution with a constant weighting
function and without auxiliary constraint. It is hard to
explain why they found differences in their results
when the derivation used for BG exactly produces the
minimum norm solution. The other common error
when deriving the BG solution is to assign the same
estimator for all the n components of the vector field at
the target point.

In the original work of Backus and Gilbert [1968],
they consider instead of (9) a simpler expression that
can be obtained like a particular case of:

min [/ |diag [A(ro, 1) — 18(xo — OJI2?W(ry, 1)dr
+ [ 1A@, 1) — diag [A(, Dli%dr (10)

where diag (X) represents a diagonal matrix with main
diagonal as X. Denoting

¢i(r) = (Cil (xo), Ciz(l'o)r oo, 6 ()

and Li(r) = (5 (), E(x), ..., (@) (A1)
and using (4), problem (10) can be rewritten as:
n Ns
min L kgl 21 F (ro)l¥ (1) — 8(xp — r)}z
n Ng
X Wity 1) + 2,1 C?(ro)lf(r)]zldr (12)
Pak

Again, if W(r, r) = 0, an additional constraint is needed
and similarly to (6) ar}d (7), we have:

n

minj;kgl

N;s

> c:‘(ro)lnr)}z
i=1

n

X W(ry, 1) + E
L3

Ns

> ci‘(ro)I;’(r)]Z]dr

i=1

st: f
R

Ns
> cr(ro)lg‘(r)}dr =1,fork=1..n (13)
i=1
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Note in (12) and (13) that the problem can be indepen-
dently solved for each value of k = 1. . n. Problem (13)
corresponds to the formula presented in Backus and
Gilbert [1968] and is used in the following section to
determine the coefficients.

Computing coefficients

As noted earlier, problem (13) can be solved for each
value of k. In order to derive the coefficients that solve
(13), we consider the estimation of the component k =
m of a vector field of dimension n at point r,. If we
define:

f=(c'(x), 7' (xg), - . ., €, (%))" (14)

M; = [ 1P @I Wik, ndr

n

+ Y [ Ip@PEd (15
p=1
p#m

w = [ 1"@dr (16)

then, the unknown coefficients f are the solution of a
quadratic optimization problem with a linear con-
straint that is equivalent to problem (13) for k = m:

min f*Mf st: ffu=1 17)

that, if M is invertible, has the solution:
M 1u 18
 uMlu (18)

These coefficients can be substituted in (2) to obtain the
BG estimator for the m-th coordinate of j(r,). Note that
f comprises only the m-th coordinate of each ¢;(ry).
Repeating the solution process (14)-(18) for different
values of k = 1..n, we can completely determine the
coefficients c;(rp) for the point ry, and by changing the
target point r;, we can compute the BG estimate for the
whole solution space.

Note that in the discrete case, i.e., when instead of
system (1) we have a system of algebraic equations,
equations (15) and (16) change accordingly to sums
over the rows of the lead field matrix. Similar to the
scalar case described in Backus and Gilbert [1967, 1968,
1970], to consider noisy data, it is enough to add an
additional term to the elements of matrix M in (15).

DISCUSSION

It is interesting to discuss some important aspects of
formulas (9) and (13). Consider the estimation of the
component k of a vector field of dimension n at point
r;. From equation (3), is clear that the averaging kernel
of the k-th component has factors multiplying the k-th
component of the vector field for each point r # ry and
factors multiplying the other components p (p # k).
Then, the resolution kernel can be decomposed in the
“main resolution kernel” associated to the k-th compo-
nent and the others “cross resolution kernels” associ-
ated to the p (p # k) components. If we consider one
row of A(r, r) in (4), then the main resolution kernel
will be the function in the diagonal and the cross
resolution kernels are determined by the off-diagonal
elements of that row.

With this convention note that in (9a) all the differ-
ences determined by the main and the cross resolution
kernels minus the delta and the null function, respec-
tively, are weighted. In addition, the constraints in (9b)
force the main resolution kernels to have an integral
equal to 1 and the cross resolution kernels to have an
integral equal to zero. In contrast, in (13) only the
difference of the main resolution kernels and the delta
is weighted, i.e., the difference between the cross
resolution kernels and the null function has a constant
weight equal to 1. In addition, the constraints of
problem (13) only force the main resolution kernels to
have an integral equal to 1, without any constraint on
the cross resolution kernels. In our opinion, these are
two weak points of the BG method for vector fields as
presented in Backus and Gilbert [1968]. Other prob-
lems, such as the inability to synthesize a delta or the
presence of negatives sidelobes, cannot be considered
as shortcomings of this method since they appear in all
the linear inverse solutions and mainly depend on the
set of functions 1;(r).

The first aspect was considered in Grave de Peralta
Menendez et al. [1997a] where some changes are
introduced in the weighting strategy to obtain a
quadratic optimization problem without additional
constrains, i.e., W(r, r) # 0. In addition, the differences
between the cross resolution kernels and the null
function are weighted to reduce the contribution of
faraway points. This approach, termed the Weighted
Resolution Optimization (WROP) method, has proved
to be a quite flexible approach containing as particular
cases some well-known solutions and providing en-
couraging results in the analysis of experimental data
[Grave de Peralta Menendez et al., 1997b].

The second point, i.e., imposing the condition to the
sum of the cross resolution kernels, was considered
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in Ory and Pratt [1995]. To our knowledge, there is no
work considering both aspects together. For an alterna-
tive to suppress the negative sidelobes of the resolu-
tion kernels, see Huestis [1987].

Conclusions

We present the Backus and Gilbert theory for the
case of vector fields including the detailed derivation
of the coefficients that determine the solution. Two
main drawbacks of this theory are identified together
with some typical mistakes that appear in the literature
when trying to derive the Backus and Gilbert solution.
Alternatives to deal with the drawbacks are suggested,
driving the attention to the references that deal with
them.
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