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Abstract

The concept of a resolution field provides a means to compare arbitrary estimators of a brain activity of interest (AOI), represented,
for example, by the amplitude of a dipole at a certain location of interest with well-defined and known direction. Like the lead field, it
represents a vector field with the property that a measure of the impact of a hypothetical dipole at an arbitrary point in the brain is
obtained by calculating the scalar product with the respective dipole moment. While in the case of the lead field this measure of impact
quantifies the contribution of a hypothetical dipole to the data recorded in a specific measurement channel, in the case of the resolution
field it quantifies the contribution of a hypothetical dipole to the estimate of the AOL The resolution-field concept, which uses elements
of the Backus-Gilbert theory and is closely related to the concept of a resolution matrix, is illustrated with examples based on a

simulated measurement with a 148-channel magnetometer system. © 1997 Elsevier Science Ireland Ltd.
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1. Introduction

Great efforts have been made in the last few years to
develop advanced techniques for tracing back the electro-
encephalogram (EEG) and the magnetoencephalogram
(MEG) to their underlying sources in the brain. It is pos-
sible now, for example, to work with relatively realistic
volume conductor models of the human head (Hdmél4inen
and Sarvas, 1989; Bertrand et al., 1991; Thevenet et al.,
1991; Yan et al., 1991) and with source models taking into
account the real surface of the cortex, reconstructed from
magnetic resonance tomograms (Dale and Sereno, 1993;
Fuchs et al., 1994; Liitkenhdner et al., 1995). However,
despite all this progress the principal problem remains that
the estimation of sources in the brain from electrical or
magnetic measurements outside the head represents an
inverse problem which has no unique solution.

The only way to overcome the non-uniqueness of the
inverse problem is to introduce additional constraints. In
the ideal case, these constraints are derived from reliable a
priori information about the sources, either obtained with
other techniques or based on fundamental neurophysiolo-
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gical or neuroanatomical knowledge. In practice, however,
such information is often not available so that it is required
to be content with plausible assumptions. An example is
niemi, 1984; Himéildinen and I[lmoniemi, 1994). From
the physiological viewpoint, the technique corresponds
to the assumption that, given a set of source configurations
able to explain the measured data, the configuration with
the least energy consumption is the most plausible one.
As long as EEG and MEG are considered relatively
independent from functional imaging techniques like posi-
tron emission tomography (PET) or functional magnetic
resonance imaging (fMRI), the task of source analysis is to
retrieve information not only about the activities of the
contributing generators, but also about their locations.
Unfortunately, spatial resolution is a weak point of EEG
and MEG source analysis (Nunez, 1986; Wikswo and
Roth, 1988; Tan et al., 1990; Liitkenhéner, 1991), and
erroneous conclusions about the spatial structure of the
source discredit other conclusions derived from the data.
A way to overcome this problem could be the combination
of EEG and MEG with PET or fMRI. The latter techniques
have a better spatial resolution, but a relatively poor tem-
poral resolution. In principle, such a synthesis opens the
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possibility to balance the shortcomings of the one group of
methods by the strengths of the other group of methods. In
the present case this would mean that the task of fMRI and
PET would be to provide information about the source
configuration, while the task of EEG and MEG would be
to provide the time courses of the respective activities.

Efforts to combine EEG and MEG with functional ima-
ging techniques are certainly steps in the right direction for
the solution of many fundamental questions. However, the
idea developed above represents an idealization, and it is
to be expected that attempts to realize this idea in practice
will lead to some serious problems. For example, the pro-
blem that EEG and MEG have a relatively poor spatial
resolution remains, though in a weaker form, even if
exact information about the source locations is available
(Liitkenhoner, 1992). Furthermore, it is not guaranteed that
brain regions giving rise to significant activities in PET or
fMRI are generators of significant EEG or MEG activities
as well, and, vice versa, a source significantly contributing
to EEG and MEG may be invisible in PET and fMRI. The
latter situation especially, would give rise to a big problem,
because significant components of the measured EEG or
MEG would inevitably be attributed to the wrong sources.

In conclusion, a priori information, if available, will not
necessarily provide the complete spatial structure of the
source model for the analysis of EEG and MEG so that it is
important to explore strategies applicable also in the case
of incomplete information. For that purpose it is useful to
consider the following question: How to obtain the best
estimate for the activity occurring in a given brain region,
the region of interest, without having reliable information
about the locations of other possible sources? The activity
to be estimated shall be called the activity of interest
(AQI). To understand the concept to be developed it is
not essential to have a concrete idea of the AOI, but it
may be helpful to consider it as the amplitude of a dipole
at a specific location with well-defined and known direc-
tion (the examples given below are of this type). In prin-
ciple, the AOI could represent any other reasonable
measure of activity (e.g. the amplitude of a certain quad-
rupole component or the mean current density in an
extended patch of the cortical surface).

The estimation of the AOI can be imagined as a projec-
tion of the measured data into the region of interest. Since
there are concurrent activities at other locations, the task is
to focus the data such that the AOI is reproduced as well as
possible, while interferences from concurrent sources are
minimized. This idea corresponds to the concept of a soft-
ware lens developed by Freeman (1980).

An estimate for the AOI can be derived in many differ-
ent ways so that it is important to have criteria for the
assessment of the quality of a method. In what follows, a
general concept for the comparison of different methods is
developed. This concept can be applied completely inde-
pendent of actual data. In contrast to previous work (Grave
de Peralta Menendez et al., 1996), where data-independent

figures of merits are introduced for an objective compar-
ison of linear distributed inverse solutions, the theory
developed here is applicable to any kind of linear inverse
method, though at the expense that global aspects are
pushed into the background.

To forestall misunderstandings it must be said that the
theory described below will not be very useful in situations
where one single equivalent current dipole or a small num-
ber of current dipoles (multi-dipole model) provide an
almost perfect fit for the measured EEG or MEG. In
such favorable cases, the optimal model is already avail-
able so that there is no need to consider other models. The
situation changes, however if the signal-to-noise ratio is
poor owing to concurrent sources in the brain (for exam-
ple, when considering single epochs of event-related activ-
ity) or if the sources have a diffuse character so that a
multi-dipole model is inappropriate. These are conditions
where the concept described below can be helpful to select
a method optimally adapted to the intentions of an inves-
tigator.

2. Theory
2.1. The resolution field

The starting point for the considerations that follow is
the assumption that an estimate @ of the AOI can be
obtained by linearly combining the time functions
recorded in the N measurement channels (EEG, MEG or
a combination of both). Denoting these time functions
as dit), 1 £i < N, the above assumption can be written

as:
N
a(tlw)= ;1 w;d;(t) ¢)]

The coefficients w; are weighting factors which are depen-
dent on the nature of the respective measurement channel
and on the specific type of estimation performed. Exam-
ples will be given below. It is convenient to combine the
set of weighting factors to a column vector w. The depen-
dency of the estimate @ on w is indicated by using the
notation 4(zlw).

In practice, it is not to be expected that the generator of
the AOI is the only source contributing to the measured
EEG or MEG. Assume that an additional source is repre-
sented by a dipole at location r with moment q(#). The
contribution of this hypothetical dipole to the data
recorded in the ith channel can be written as q(f)-fi(r),
where fi(r) is the lead field (Cuffin and Cohen, 1979;
Héimildinen et al., 1993; Malmivuo and Plonsey, 1995;
Williamson and Kaufman, 1987) associated with the ith
channel. This contribution is passed on to the estimate of
the AOI, d(tlw), so that, according to Eq. (1), the total
contribution of the hypothetical dipole at r to a(tlw) is
q(n)-R(rlw) with
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R(rlw)= [_\2,1 wif,(r) )

The vector R(rlw) shall be called the resolution field since
it is closely related to the concept of a resolution matrix,
which plays an important role in the theory of discrete
inverse problems. The continuous analogue of the resolu-
tion matrix, called the averaging function or resolving
kernel, is an integral part of the Backus-Gilbert approach
for the solution of inverse problems (Backus and Gilbert,
1968; Backus and Gilbert, 1970).

The resolution field is a vector field similar to the lead
field. Lead field and resolution field have in common that,
by calculating the scalar product with the dipole moment
q, a measure of the impact of a hypothetical dipole at r is
obtained. However, the meaning of this measure of impact
is different for the two fields: in the case of the lead field it
quantifies the contribution of a hypothetical dipole to the
data recorded in a specific measurement channel, whereas
in the case of the resolution field it quantifies the contribu-
tion of a hypothetical dipole to the estimate of a specific
AOI. Thus, the resolution field can be considered as the
lead field of a synthetic virtual sensor (Robinson, 1989)
providing the AOL

To make it absolutely clear it shall be emphasized that
the lead field as well as the resolution field are defined
irrespective of the existence of a dipole at a certain loca-
tion. They measure the potential impact of a dipole. With
regard to the resolution field this means: supposed at loca-
tion r there is a dipole with moment q, then q-R(rlw) is the
contribution of this dipole to the estimate of the AOI. The
resolution field does not judge this contribution, i.e. the
contribution can be desired (if the dipole belongs to the
source configuration responsible for the AOI) or undesired
(if the dipole produces concurrent activity or noise). In the
ideal case, the resolution field would be non-zero only in
the vicinity of source elements belonging to the generator
of the AOL This is, unfortunately, not possible in practice,
as will be illustrated later.

The above consideration for a single dipole can be
easily transferred to arbitrary current distributions J. The
contribution of such a current distribution to the estimate
a(rlw) is given by the volume integral

a;(tlwy= Jv J(r, ) - R(riw)dV 3

A similar equation relates the signal recorded in one of the
channels to the respective lead field.

To calculate the resolution field, two components are
required: the lead field vectors f,(r) for the N measurement
channels, and the weighting factors w;. The latter will be
considered in great detail below. The lead field depends on
the measurement device and the volume conductor. In this
study, only measurements with magnetometers will be
considered, and the volume conductor is a homogeneous
sphere. Furthermore, the magnetometer coils have a radial

orientation. The lead field for this simple case is given by
the equation

£ = 247 (iix i) 4)

2
Ir;—rl*\ Ir;=rl " Ir;l

where r; denotes the location of the ith coil.

2.2. The weighting factors

The weighting factors w; are highly dependent cn the
estimation procedure used. This shall be illustrated with
four examples: the best channel-estimator, the least-
squares estimator, the maximum-likelihood estimator,
and the minimum-norm estimator.

To begin with a very simple example, it shzll be
assumed that there is only one single active source in the
brain so that all channels reflect the time course of this
source, except for superposed noise. Thus, disregarding a
constant scaling factor, the time course obtained for the
channel with the best signal-to-noise ratio (the ‘best’ chan-
nel) can be used to estimate the time course of the source.
With regard to the resolution-field concept introduced
above this means that all weighting factors w; are zero,
except for the weighting factor corresponding to the best
channel. If this is the kth channel, Eq. (2) reduces to
R(rlw) = wif(r), i.e. the resolution field differs only by
a constant factor from the lead field corresponding 1o the
best channel.

If the recorded data are noisy, it is advisable to estimate
the source activity on the basis of all channels rather than
to focus on the best channel. This means that a weighted
average of all measured time functions has to be calculated
according to Eq. (1). This can be achieved, for example, by
fitting the model of a current dipole with fixed location and
fixed orientation to the data, because, given the latter para-
meters, the remaining optimization problem for the ampli-
tude of the dipole moment has a solution consistent with
Eq. (1). Two different optimization procedures fcr the
amplitude of the dipole moment will be considered: a
least-squares fit and a maximum-likelihood estimation
(Sekihara et al., 1992).

The assumption of one single dipole is questionable in
many (if not most) practical applications. An alternative is
the assumption of many (typically a few hundred) dipoles
homogeneously distributed in the brain. The attempt to
estimate the moments of these dipoles generally results
in an underdetermined problem, i.e. there are more
model parameters than measurement channels. To over-
come this problem, additional constraints are required.
Very common is the minimum-norm estimation already
mentioned in the introduction (Himéldinen and Ilmo-
niemi, 1984; Hamildinen and Ilmoniemi, 1994). The solu-
tion of the minimum-norm estimation problem results in
the dipole moments not only at the point of interest, but in
all the other locations as well. To focus on the activity of
interest, the dipole moment obtained for the point of inter-
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est is projected onto the direction of interest, while the
information obtained for the other locations is simply dis-
carded.

2.3. The normalized resolution field

The scale of the resolution field is not necessarily well-
defined, owing to the fact that there is some arbitrariness
with regard to the scaling of the weighting factors. This
causes a problem if resolution fields based on different
assumptions are to be compared. To avoid this problem,
a normalization is introduced as follows: a resolution field
is called a normalized resolution field if the vector of
weighting factors, w, fulfills the condition

w-d'% =1 (5)

where d*? is the data vector arising from an AOI with
amplitude one. A consequence of this kind of normaliza-
tion is that the AOI is retrieved without error if there are
no other sources in the brain and the sensors (electrodes or
magnetometer coils) pick up no noise at all. In what fol-
lows, only normalized resolution fields will be considered
so that explicit mention of the normalization is dispensa-
ble. In some of the examples considered here the set of
weighting factors is normalized from the outset: if not,
they are assumed to be rescaled appropriately.

2.4. Variance of estimated AOI

If the recorded data are composed of a signal and addi-
tive noise having a Gaussian amplitude distribution, with
no correlation between signal and noise, then it is straight-
forward to derive a simple formula for the variance of the
estimator 4(tlw):

N N
varfal= ¥ X wic; jw; (6)

i=1j=1

The quantity c;; in this equation specifies the covariance
of the noise picked up by the channels / and j.

3. Examples

The theoretical considerations presented above shall be
illustrated now with a few examples. The model config-
uration is identical in all these examples, but the strategy
used to estimate the AOI differs.

3.1. Model

The data are assumed to be recorded with a 148-channel
magnetometer system characterized by radially oriented
coils located on a spherical surface with a radius of 12
cm (Liitkenhoner et al., 1996). Brain and scalp are
assumed to be represented by concentric spheres with 8
cm and 10 cm radius, respectively. The AOI corresponds
to the amplitude of a dipole located on the z-axis, having a

distance of 6 cm from the center of the sphere and pointing
into the x direction. Thus, in the present case, the region of
interest is represented by a discrete point in the brain: the
location of the dipole whose moment is to be estimated.
This location shall be denoted as the location of interest.

Two different noise models are considered: spatially
uncorrelated noise having a Gaussian amplitude distribu-
tion with variance one, and spatially correlated noise aris-
ing from random dipoles in the brain. For the sake of
simplicity, the two types of noise will be referred to as
the uncorrelated and the correlated noise. The former
model is not very realistic, because EEG and MEG com-
ponents not correlated with the AOI (‘noise’) are usually
dominated by spatially correlated contributions from con-
current activities in the brain, not by instrumental noise
(Wikswo et al., 1993; Kuriki et al., 1994). Nevertheless,
the model of spatially uncorrelated noise is important since
it is the model underlying the widely used least-squares
estimation technique. The idea underlying the more realis-
tic random dipole model is that the brain is homogeneously
filled with dipoles having random orientations and ampli-
tudes (Cuffin and Cohen, 1977; Liitkenhoner, 1991; de
Munck et al., 1992). The covariances for this model
were calculated using an analytical formula derived for
the case that each random dipole has three independent
components with a Gaussial amplitude distribution (Liit-
kenhoner, 1994). To account for the fact that measured
data typically contain also spatially uncorrelated instru-
mental noise, the diagonal elements of the noise covar-
iance matrix were multiplied by the factor 4/3. This
corresponds to the assumption that the variance of the
spatially uncorrelated noise is one third of the variance
of the spatially correlated noise arising from the random
dipoles. The covariance matrix was finally rescaled so that
its diagonal elements had the value 1. This means that the
uncorrelated and the correlated noise had the same var-
iances.

3.2. Resolution field

The resolution field represents a vector field defined for
each point in the brain. However, for visualization pur-
poses it is useful to consider only a relatively small sample
of representative points. In the present study, points inside
the sphere representing the brain where taken from a rec-
tangular grid (2-cm spacing between adjacent grid lines).
The resolution field was calculated for each of the resulting
257 points, and the results were plotted as arrows, except
that arrows corresponding to a resolution field with a
length smaller than 1/4 were suppressed.

A visualization of the resolution field for the best-chan-
nel estimator is displayed in the upper row of Fig. 1. The
left panel shows a view from the left, whereas the right
panel shows a view from the top. The best channel corre-
sponds to the coil plotted in red. The resolution-field vec-
tor obtained for the point of interest (red arrow) has the
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length IRl = 1.035, which differs little from the ideal
value for the resolution field vector at the point of interest."
The figure demonstrates that the best-channel estimator is
not at all specific for the point of interest. There are many
other locations for which the estimate of the AOI is even
more sensitive.

A resolution field with a completely different appear-
ance is obtained if a least-squares estimator rather than the
best-channel estimator is used (middle row of Fig. 1). The
pattern of resolution field vectors is symmetrical with
regard to the x—z plane and anti-symmetrical with regard
to the y—z plane. The length of the resolution-field vector
at the location of interest (red arrow) has now the ideal
value IRl =1. Among the source locations considered
there is only one location where IRl is greater than at the
location of interest: this is the location closest to the mea-
surement locations, which has the Cartesian coordinates
(0,0,8). The length of the resolution-field vector at this
location is given in the fourth column of Table 1. It is
not very surprising that, for the least-squares estimator
considered here, IR| tends to increase with decreasing dis-
tance between source and coils because the amplitude of
the magnetic field decreases with the square of this dis-
tance. Though this effect is partially compensated for by
the fact that the number of coils significantly contributing
to the estimate of the AOI diminishes with decreasing
distance (Liitkenhtner, 1996), it is clear that, in order to
have a specified impact on the estimated activity, sources
near the surface of the brain require a smaller dipole
moment than deeper sources.

The resolution-field pattern obtained for the least-
squares estimator is certainly highly superior to that
obtained for the best-channel estimator. Nevertheless,
the pattern is still unsatisfactory, because the specificity
for the AOI is not very pronounced. A much higher spe-
cificity is obtained for the maximum-likelihood estimator
(bottom row of Fig. 1). The respective weighting factors
were derived using the correlated-noise model. Compared
to the previous examples, the resolution-field pattern
obtained for the maximum-likelihood estimator is clearly
more compact, and it is tempting to assume that the max-
imum-likelihood estimator is highly superior to the two
estimators considered before. However, even if the max-

! Though the deviation from the ideal value one is quite insignificant, it
is instructive to analyse the reason for this discrepancy. For the geometry
considered in this example, the dipole associated with the AOI produces
a magnetic field pattern with the extrema located on the y-axis. However,
owing to the discrete nature of the measurement, the best-channel cor-
responds to a measurement location lying slightly apart from the y-axis.
Since the resolution-field concept provides an objective measure and is
not influenced by the intentions of the user, it reflects this small incon-
sistency: a measurement coil located near the y-axis (but not located
exactly on this axis) is most sensitive for a dipole forming a small
angle with the x-axis. As a consequence, the resolution-field vector at
the point of interest is not completely aligned with the x-axis, and the
normalization according to eqn (5), where a dipole oriented exactly in x
direction is assumed, yields a length slightly greater than 1.

imum-likelihood estimator may have a better performance
in most practical situations, superiority is not guaranteed.
The maximum-likelihood estimator is definitely the opti-
mal choice if the model assumptions underlying the con-
struction of the estimator are perfectly fulfilled. If this is
not the case, however, other estimators may perform bet-
ter. Suppose, for example, that the dominating noise
source is located at the intersection of the z-axis and the
surface of the brain, i.e., at the position (0,0,8). As in the
case of the least-square estimator, this position, having the
closest distance to the measurement surface, is associated
with the longest resolution-field vector. This means that a
dipole at this position is capable of affecting the estimate
of the AOI with the least effort. The fourth column of
Table 1 shows that, at this location, the maximum-like-
lihood estimator has a resolution-field vector which is
longer than that of the least-squares estimator. Thus, sup-
posed there is an exceptionally strong noise source at this
location (which would violate, of course, the assumptions
underlying the construction of the maximum-likelihood
estimator), then the least-squares estimator will be super-
ior.

The images obtained for the minimum-norm estimator
are not presented here because they turned out to be almost
indistinguishable from those presented in the bottom row
of Fig. 1. Regarding the fact that the calculations of max-
imum-likelihood and minimum-norm estimator are so dif-
ferent, it is a remarkable finding that the resolutions fields
of these two estimators are so similar.

3.3. Weighting factors

The similarities of the resolution-field patterns obtained
for the maximum-likelihood estimator and the minimum-
norm estimator give rise to an important questior: are
these two estimators very similar also in other important
respects or is the similarity basically confined to the reso-
lution field? To answer this question it is instructive to
consider the outcome of an intermediate step in more
detail: the weighting factors for the individual chanrels.

The weighting factors used in the above examples are
illustrated in Fig. 2. The 148 coil locations were projected
into a plane, and the values of the respective weighting
factors were visualized by controlling type and size of the
symbol plotted. A weighting factor is represented by a dot
if its value is small compared to the largest weighting
factors, otherwise it is represented by a circle with an
area corresponding to its absolute value. A filled circle
indicates a weighting factor with negative sign. The pat-
tern obtained for the best-channel estimator (Fig. 2a) is, of
course, trivial and does not require any further comment.
The patterns obtained for the least-squares estimator (Fig.
2b) and the maximum-likelihood estimator (Fig. 2c) are
similar: positive weighting factors in the upper half of the
plot (y > 0), and negative weighting factors in the bottom
half (y < 0). This result reflects the fact that, in the present
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Fig. 1. Resolution fields obtained for the best-channel estimator (upper row), the least-squares estimator (middle), and the maximum-likelihood estimator
(bottom). The left column shows views from the left, the right column views from the top. To allow a free view to the dipoles (arrows) visualizing the
resolution field, part of the coils were removed, and the spheres representing scalp and brain were opened (left column: left hemispheres removed; right
column: upper hemispheres removed). In the left column, the dipoles in the left hemisphere were removed as well, to improve the visibility of the dipoles
in the right hemisphere. In the case of the best-channel estimator (upper row), the coil representing the best channel is plotted in red.

case, the AOI corresponds to a dipole located on the z-axis,
with its moment pointing in x direction. This means that
for measurement locations, with a positive y coordinate the
magnetic field has the same sign as the amplitude of the
dipole moment, whereas an opposite sign is obtained for
coils with a negative y coordinate. Thus, to obtain an esti-
mate for the AOI, contributions from coils with a negative

y coordinate have to be multiplied with a negative weight.
A striking difference between least-squares and maxi-
mum-likelilood estimates is that the latter is essentially
based on only a few channels close to the central coil (z
axis). This result suggests that, for the source considered
here, magnetometer systems covering only a limited area
of the scalp have about the same performance as a whole-
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Table 1

Variance measure var[d] for the correlated noise (second column) and the uncorrelated noise (third column) as well as amplitude of resolution-field vector

obtained for the point closest to the measurement coils (fourth column)

Estimator var[d] for different types of noise IR(0, 0, 8lw)|
Uncorrelated Correlated

Best-channel 0.0201 0.0201 2.11

Least-squares 0.0008 0.0122 1.66

Maximum-likelihood 0.0036 0.0055 2.72

Mimmum norm 0.0936 0.0281 2.78

The variance measures have the unit (nAm)?, provided that the noise registered by the measurement coils has the standard deviation 1 {T. If the noise has
a different srandard deviation, the variance measures have to be rescaled accordingly.

head magnetometer system, provided that a maxirum-
likelihood estimator is used.

A completely different pattern is obtained for the mini-
mum-norm estimator. Fig. 2d shows that positive and
negative weighting factors are intermixed. This means
that the minimum-norm estimator performs complex dif-
ference operations with the data from the different chan-
nels. This is a remarkable result with regard to the fact that
the resolution field of the minimum norm estimator is
almost indistinguishable from that of the maximum-like-
lihood estimator. ’

The second column in Table 1 gives the sum of the
weighting factors squared. In the case of uncorrelated
noise with variance one this measure can be interpreted

Fig. 2. Visualization of the weights for the individual channels. (a) Best-
channels estimator. (b) Least-squares estimator. (¢) Maximum-likelihood
estimator. (d) Minimum-norm estimator. The coil locations were pro-
jected into a plane so that x- and y-axis of the three-dimensional space
were mapped to abscissa and ordinate, respectively. The area of a symbol
is proportional to the absolute value of the weighting factor for the
respective coil, except that weighting factors with an absolute value
smaller than a certain limit are represented by dots. Negative weighting
factors indicated by filled symbols.

as the variance of 4, as can be deduced from Eq. (6). It is
not surprising that, with regard to this measure, the least-
squares estimator has the best performance, since the
assumption of uncorrelated noise with identical standard
deviations in all channels is the principle underlying the
least-squares estimation procedure. The value obtained for
the maximume-likelihood estimator is more than four times
greater than that obtained for the least-squares estimator.
Nevertheless, the maximum-likelihood estimator performs
quite reasonably compared to the other two estimators.
The noise sensitivity of the minimum-norm estimator is
extremely bad. A stronger regularization would certainly
reduce this sensitivity, but this is not the topic of the pre-
sent paper.

Eq. (6) allows one to calculate the variance of A for
arbitrary correlations between channels. The third column
gives the variances obtained for the correlated-noise
model. As expected, it is the maximum-likelihood estima-
tor which has the best performance now, whereas the var-
iance obtained for the least-squares estimator is increased
by more than 1 order of magnitude. It is remarkable that
the minimum-norm estimator performs much better than
for uncorrelated noise, though it does not perform as well
as the least-squares estimator. The performance or the
best-channel estimator is, of course, not dependent on
assumptions about correlations between channels.

In a supplementary investigation, the variance of a was
calculated for spatially correlated noise without an addi-
tional uncorrelated component (i.e., the multiplication of
the diagonal elements of the noise covariance matrix by
the factor 4/3 was omitted). The variances obtained for the
maximum-likelihood and the minimum-norm estimator
were 0.0049 and 0.0062, respectively. This result is of
considerable importance. It suggests that even without
having knowledge of the covariance matrix of the noise
(such knowledge is a prerequisite for the application of the
maximum likelihood estimation technique), a nearly opti-
mal estimator (with respect to the signal-to-noise ratio) can
be obtained just by applying the minimum-norm estima-
tion procedure. This conclusion, which is valid, of course,
only for the ideal case that all noise sources are located
inside the brain, represents an interesting consistency
check for the resolution-field concept: since the maxi-
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mum-likelihood estimator and the minimum-norm estima-
tor are associated with very similar resolution fields, Eq.
(3) suggests that the variances of 4 should be similar as
well, provided that there are no noise sources outside the
volume V representing the brain. The above result con-
firms this expectation convincingly.

4. Discussion

For a proper interpretation of EEG and MEG it is useful
to have a certain model in mind. In view of the complexity
of human brain function it is inevitable that any model
represents a great simplification. In practice, the situation
can be even worse since the assumptions underlying the
model can be oversimplified or even completely erro-
neous. For example, the model of a single equivalent cur-
rent dipole would not be so common nowadays if its
application were strictly confined to situations with just
one active brain area. Another common modeling error
is the postulation of a noise covariance matrix not neces-
sarily reflecting the situation at the time of measurement
(e.g. implicit assumption of spatially uncorrelated noise in
the case of a least-squares estimation; use of a pre-stimulus
covariance matrix for the analysis of post-stimulus data).
But even if such errors are avoided and a custom-made
model is used, it is not guaranteed that the model will do
what it is supposed to do, because the estimation of the
model parameters from the measured EEG or MEG repre-
sents an inverse problem, and the solution of this problem
may not permit the intended conclusions. By applying the
concepts developed in this communication it is possible to
explore potential shortcomings of an analysis procedure in
an a priori manner, i.e., without requiring actual data.

At first glance, the usefulness of the resolution-field
concept may appear to be limited by the fact that the
AOl is defined as an amplitude measure, whereas currents
in the brain correspond to vectors. It would be no principal
mathematical problem to generalize the resolution-field
concept such that the AOI is allowed to be a vector. How-
ever, such a generalization does not seem to be helpful:
instead of a resolution field some kind of resolution tensor
would be obtained, which would be hard (if not impossi-
ble) to visualize. Furthermore, for currents in the cortex it
is not a problem at all that the AOI represents an amplitude
measure, because it is reasonable to assume that these
currents are oriented perpendicular to the cortical surface.
Thus, it is not required to estimate the direction of the
currents from the measured EEG or MEG, provided that
a reconstruction of the cortical surface from magnetic
resonance images is available. Even if such information
is missing it may be possible to associate a location of
interest with a certain direction. For example, using a
dipole source analysis of MEG data an investigator inter-
ested in the primary auditory cortex can define not only the
location of the auditory cortex, but also the mean direction
of the currents in this area.

As already indicated, the resolution-field concept uses
elements of the Backus-Gilbert theory (Backus and Gil-
bert, 1968; Backus and Gilbert, 1970), with the resolution
field being a special case of the resolution function (or
averaging kernel) of Backus and Gilbert. This theory, ori-
ginally developed in a geophysical context, was brought to
the attention of the EEG and MEG community by Robin-
son (Robinson, 1989; Robinson and Rose, 1992). Taking
the idea of the resolution field as a basis, the principle of
the Backus-Gilbert approach is, roughly speaking, to con-
struct an estimator with the property that the associated
resolution field is as compact as possible, centered around
the location of interest (minimization of the ‘spread’ of the
resolution field). Thus, if the main criterion for the ‘good-
ness’ of an inverse procedure is the spread of the resolution
field, then the Backus-Gilbert method is certainly the first
choice. However, like any other method, the Backus-Gil-
bert method has not only advantages, but also serious
drawbacks. The price to be paid for the achievement that
the spread of the resolution field (or resolving function, to
use the nomenclature of Backus and Gilbert) is minimal is
that the method does not explain the data exhaustively
(Menke, 1984). Furthermore, the numerical effort required
for the computation of a complete solution (i.e., a solution
for a sufficiently dense grid of points in the brain) is much
higher than that typically required for other methods. For
these reasons the Backus-Gilbert theory did not find the
same attention as other inverse procedures for the analysis
of EEG and MEG.

A conceptional difference between the Backus-Gilbert
theory and the resolution-field concept as described here is
that the primary purpose of the latter is to mediate an
intvitive comprehension of the essential properties of a
given estimator, whereas the Backus-Gilbert theory pro-
vides a complete framework for the construction of an
estimator. After having used the resolution-field concept
to get insight into a method, the idea may arise, of course,
to improve, in some sense, the performance of the method.
The resolution-field concept does not tell how to achieve
this, but it provides a tool to assess the performance of a
modification. The examples presented here have shown
that the resolution-field concept is useful not only in the
context of the Backus-Gilbert method, but can be applied
to any other linear inverse procedure as well. While an
inverse procedure is typically based on a global optimiza-
tion concept, the resolution field focuses on local issues,
namely a specific AOL If there is more than one AOI or if
it appears appropriate to consider a certain number of
representative points in the brain, the resolution field can
be calculated, of course, successively for all points of
interest.
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