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A Critical Analysis of Linear Inverse Solutions
to the Neuroelectromagnetic Inverse Problem

Rolando Grave de Peralta-Menendez* and Sara L. Gonzalez-Andino

Abstract—This paper explores the possibilities of using linear
inverse solutions to reconstruct arbitrary current distributions
within the human brain. We formally prove that due to the
underdetermined character of the problem, the only class of
measurable current distributions that can be totally retrieved are
those of minimal norm. The reconstruction of smooth or averaged
versions of the currents is also explored. A solution that explicitly
attempts to reconstruct averages of the current is proposed and
compared with the minimum norm and the minimum Laplacian
solution. In contrast to the majority of previous analysis car-
ried out in the field, in the comparisons, we avoid the use of
measures designed for the case of dipolar sources. To allow for
the evaluation of distributed solutions in the case of arbitrary
current distributions we use the concept of resolution kernels.
Two summarizing measures, source identifiability and source
visibility, are proposed and applied to the comparison. From this
study can be concluded: 1) linear inverse solutions are unable to
produce adequate estimates of arbitrary current distributions at
many brain sites and 2) averages or smooth solutions are better
than the minimum norm solution estimating the position of single
point sources. However, they systematically underestimate their
amplitude or strength especially for the deeper brain areas. Based
on these result, it appears unlikely that a three-dimensional (3-D)
tomography of the brain electromagnetic activity can be based
on linear reconstruction methods without the use of a significant
amount of a priori information.

Index Terms— Electromagnetic tomography, linear inverse so-
lutions, neuroelectromagnetic inverse problem, source localiza-
tion. -

I. INTRODUCTION

HE core of the neuroelectromagnetic inverse problem

(NIP) is the determination of the neuronal current distri-
bution within the brain, on the basis of the electroencephalo-
gram (EEG) and/or the magnetoencephalogram (MEG). The
existence of silent sources, i.e., sources that produce nonmea-
surable fields on the scalp surface [1] determines its severely
ill-posed character. Additionally, the number and the quality
of the measurements are insufficient to provide a precise
reconstruction of arbitrary current distributions. This demands
the incorporation of strong assumptions about the character of
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the currents, e.g., few dipolar sources [2], in the reconstruction
procedure. When more complex distributed currents are likely
to occur, e.g., in higher brain functions, a sensible approach
is the use of linear reconstruction methods [3]-[6], in an
attempt to construct a three-dimensional (3-D) tomography
of the neural sources. The main purpose of this work is to
investigate the feasibility of obtaining this tomography with
linear reconstruction methods under ideal conditions (exact
data).

The NIP differs from other modalities of medical imaging
[e.g., positron emission tomography (PET) and single photon
emission computed tomography (SPECT)], in that the spatial
resolution of EEG (MEG) data is very low. The number of
independent measurements that can be obtained is limited and,
thus, this inverse problem is intrinsically underdetermined. In
the case of underdetermined linear inverse problems only a
finite amount of information about the unknown parameters
can be derived, even in the ideal case of infinitely precise
measurements [7). This limitation implies that there are classes
of sources that cannot be retrieved by a given linear reconstruc-
tion method, restricting the applicability of these algorithms.
In spite of these limitations, useful solutions could be obtained
if the physical properties of the problem permit the estimation
of averaged or blurred versions of the actual neural sources.
In this paper, a solution based on the estimation of averages is
proposed and the possibility of obtaining a blurred tomography
of the sources using either this solution or a linear solution
that attempts the smoothest reconstruction of the currents is
investigated.

In Section II, following a brief statement of the NIP, the
concept of model resolution matrix [8] is introduced as the
basis to evaluate linear inverse solutions. Two measures,
the source visibility and the source identifiability, are then
defined to evaluate the expectable and the achievable quality
of the reconstructions’ that can be provided by linear inverse
solutions. After that, an exposition of some theoretical limi-
tations of linear methods follows and finally some elements
of Backus—Gilbert formalism [7] are introduced to justify
the proposal of a solution based on averages. Section III
deals with computer simulations carried out to evaluate the
possibility of achieving a 3-D tomography based on linear
reconstruction methods. The mathematical details considering
the general theoretical framework for deriving linear inverse
solutions and the lemma that proves their basic theoretical
limitations are left to the Appendixes. Throughout this paper,
uppercase and lowercase bold letters represent matrices and
vectors, respectively, and X!, X~!, X+, and || X|| denote the
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transpose, the inverse, the Moore—Penrose pseudo inverse, and
the norm of X, respectively.

II. METHODS

A. Basic Theory

The relationship between fields measured on the scalp
surface m and their sources, the primary current density j,
can be expressed for the discrete problem through the lead
field concept L [9]

m =Lj D,

where vector j (3N, x 1) is composed of we z, y, and z
components of the primary current in the IV, grid points, and
vector m contains the V,,, measured data. The lead field matrix
L(N, x 3N) reflects the sensitivity of the sensors to the
sources and depends on the geometry and conductivities of
the volume conductor model used to describe the head. Its
elements L; 35—1)+1, Li 3(p—1)+2> and L; 3(,-1)+3 represent
the sensitivity of the ith sensor to the z, y, and z components
of j at the pth grid point.

In practice, N,, < N, and the problem is highly under-
determined. Thus infinitely many solutions exist to (1) and
several approaches can be used to yield a unique solution.
Many of the approaches which lead to linear inverses can be
analyzed using an identical variational formalism described in
Appendix I. Examples of some of the linear solutions which
have been applied to the NIP are also given. What is common
to all of them is that the estimated current density is obtained
as the product of a matrix G times the data vector m, i.e.

j=Gm = GLj. ?))

B. The Resolution Matrix as a Measure of the
Effectiveness of the Different Source Reconstruction

The product R = GL that appears in (2) is known as the
model resolution matrix [8], [10] and provides a powerful tool
to analyze the performance of the inversion procedure G in the
reconstruction of j, in the absence of noise. The interpretation
of its rows (the resolution kernels) and its columns (impulse
responses) is briefly presented here. For more details about
this interpretation or applications of R to the analysis and/or
comparison of linear inverse solutions, see [10] and [11].

1) Resolution Kernels: Each component k of the estimated
vector j is associated with a resolution kernel that describes the
form in which other components of j affect its reconstruction.
Since the estimated solution j* (rp) is a linear combination
of the true distribution with coefficients given by the ith row
of R (: =3>p—-1)+k, k = 1,2,3), this row describes
how the different components of the true current distribution
are averaged by the solution G to provide the estimated
solution. Note that it follows from this definition that the
resolution kernels are independent from any particular source
model assumed for j. Specifically, if for some point 7, the
resolution kernel is centered at r,, strongly peaked near
and small elsewhere, then a source at that point can be
independently predicted or resolved from the available data

and the resolution kernel is considered to be a localized
average [8]. In practice, resolution kernels may exhibit large
sidelobes, wildly oscillating behaviors, or may be incorrectly
centered which confuse the interpretation of the resolution
concept [11].

2) Impulse Responses: The columns of R are useful to
evaluate the ability of a given solution G to retrieve single
point sources. If the actual source distribution coincides with
a single point source of unitary strength at grid point 75, then
the solution provided by the algorithm G in the absence of
noise is identical with the ith column of R (i = 3(p — 1) + &,
k = 1---3). The amplitude of the main peak of a column
could be interpreted as the amplification or reduction produced
by the inverse G when a single point source actually exists
at that point whereas the width of the main peak as the
smearing. All the nondiagonal values are ghost or spurious
sources produced by the inversion procedure G.

In the analysis of the realistic situation, where the current
distribution may be arbitrary, the resolution kernels are crucial.
The information contained on the impulse responses concerns
exclusively single point sources, a situation which does not
correspond to the aims of linear distributed inverse solutions.
Thus, the performance of linear distributed solutions in the
presence of arbitrary current distributions cannot be adequately
evaluated on the basis of impulse responses or measures
derived from them.

C. Source Identifiability and Source Visibility

Linear reconstruction techniques as the ones discussed here
promise to characterize, in principle, sources of arbitrary extent
or shape. However, the performance of these methods is
usually evaluated using a finite number of dipoles as the source
model and then applying measures such as the dipole localiza-
tion error (DLE). Using dipoles to evaluate the performance of
these methods is understandable, since dipoles are the easiest
implementable source model. However, the evaluation of these
methods exclusively in terms of DLE is questionable. This
analysis takes into account, neither the estimated value for
the source amplitude (strength) nor the possible existence
of simultaneously active sources. In addition, note that the
superposition principle does not apply to nonlinear magnitudes
such as the DLE.

As discussed above, the analysis of linear methods in terms
of its resolution kernels takes all these aspects into acrount.
Nevertheless, for fine source space discretizations the whole
analysis of the resolution kernels might be infeasible and it
is easier to summarize this information using some figures
of merit [10]. Here, we propose one figure which partially
evaluates the quality of a resolution kernel at every solution
point. This measure, termed source identifiability, takes into
account that a “good” resolution kernel has to be correctly
centered and has to have an amplitude of one at the main
peak. If the value of the resolution kernel at a grid point is
nearly zero, a source at that point will be hardly retrieved. This
measure is defined for each component k of the estimated j, as

(D - dii)Rek

Iy = 5
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where D represents the maximum distance between grid
points, Ry, denotes the absolute value of the kth element
of the kth row of R (the diagonal element), and dy; is the
Euclidean distance between the grid point associated with this
row and the point (r;) where the maximum value of the kth
row was found. According to this definition, a high value of J
indicates that the activity at this point can be correctly retrieved
by the algorimthm G, independently of the spatial blurring. A
value near zero expresses either that the main peak is far away
from the target point or that the amplitude of the resolution
kernel at the point is small. Both undesirable features result in
poor identifiability of the current distribution.

To further illustrate the practical consequences of the under-
determined character of the NIP, we introduce here a second
figure of merit, termed source visibility. The visibility of a
source (V;) evaluates as to what extent an arbitrary current
distribution can be detected by the sensor configuration. It is
defined as the ratio between the size of the visible part and
the size of the source. For single point sources, it is given by
V; = ||IL*L;||> where L; is the ith column of the lead field
matrix. Note that the identifiability depends on the inverse
G, i.e, on the a priori information added to the problem
whereas the visibility is defined only in terms of the lead
field matrix. This measure might be used to evaluate a given
sensor configuration or to compare measurement techniques
(e.g., EEG and MEQG).

D. Some Fundamental Limits in
Underdetermined Inverse Problems

The underdetermined character of the discrete NIP set limits
not only in the spatial resolution of the reconstruction of the
currents [8], [11], [12], but also in the class of nonsilent
current distributions that can be retrieved by an arbitrary linear
reconstruction algorithm G. In practical terms, it is impossible
to reconstruct the detailed shape of arbitrary primary current
distributions from finite data, i.e., it is impossible to give
accurate values for the primary currents at arbitrarily selected
grid points. Since any underdetermined inverse problem is
characterized by a resolution matrix R different from the
identity matrix, the estimates provided by any linear solution
are, in the best case, localized averages of the actual current
distribution [8]. Accordingly, attempts to estimate the exact
value of the unknown j at every grid point using linear inverse
solutions are sterile.

Still, one can hope that by using some reasonable a priori
information about the sources (e.g., maximum smoothness [5])
to construct the linear inverse, we can adequately retrieve all
the sources that agree with the a priori information. The lemma
given in Appendix II proves that this is not possible. For any
linear inverse solution different from the minimum norm and
which explains the data, this lemma identifies the class of
sources that cannot be retrieved. In simpie words, it expresses
that with the exception of the minimum norm, all linear
inverse solutions will fail retrieving some of the measurable
source configurations that fulfill a certain property. This occurs
even if the inverse solution is conceived to deal with this
type of sources. For instance, although the ML solution [5]

IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 45, NO. 4, APRIL 1998

is intended to deal with smooth source distributions, it is
unable to retrieve constant or smooth current distributions
that reach the maximum at the borders of the solution grid,
eg., J(z,y,2) = (22,92 2°%). Thus, current distributions
with maxima at the borders of the cortical mantle will be
inadequately retrieved.

E. A Solution Based on Averages

In the cases where no additional a priori information about
the sources is available, a natural constraint posed by the
underdetermined character of the NIP is the estimation of
averages of the current density at each solution point. The
problem of estimating averages or mollifiers of the unknown
parameters has been considered in other fields of application
of inverse problem (see [13], [14], and references therein).
However, in these cases, there was no attempt to restore
the original parameters and, thus, these solutions were not
consistent with the data. In contrast, in the approach presented
here, the goal is to obtain a data consistent solution using as
a priori information the fact that nothing but averages of the
true sources can be reconstructed, i.e., we look for

3

where the rows of A represent the averages (linear combina-
tions) of the true sources. In this way the metric matrix W, is
defined in an intuitive form (W,, = A’A) which is consistent
with the a priori information available. If A is invertible an
estimatej of the original parameters, consistent with the data,
can be obtained

j=(A'A)'L'[L(A®A) 'L

jave = A-j

-1

M. 4@

Many different averages can be constructed, and the inverse
solution will depend on the specific form of A. Nevertheless,
the only averages that can be correctly identified are those that
can be represented as a linear combination of the rows of L.
Physically, an average makes more sense if it contains only
positive weighting factors that decay with the distance to the
target element [8]. One alternative is to consider averages that
can be tuned to produce more or less smoothed versions of the
delta function (a single point source). In the definition of the
elements of the averaging matrix that follows, the subscript
p,q is used to indicate*grid points and the subscript k,m is
used to represent the Cartesian coordinates z, y, and 2 (i.e.,
k,m =1, 2, and 3). An element of matrix A is given by

Aij = A3(p-1)+k,3(g—1)+m
2
)

—( .
= w]e i

&)

where d,, represents the Euclidean distances between the pth
and gth grid points. The coefficients w; can be used to describe
a column scaling by a diagonal matrix. Note that, by changing
the values of o; and wj, it is possible to obtain the minimum
norm solution (MN) (¢; — 0, w; = 1) or any particular case
of weighted MN (W, diagonal). In the limit case, o; — oo,
all the rows of A are identical, thus only one average of the
true sources is reconstructed. In this case, A is not invertible
and (4) cannot be used (see [15] for the general solution). The

for kK = m and zero otherwise.
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(a)

spatial resolution, i.e., the size of the neighborhood considered
in the average, depends upon the o; values which can be
either adjusted globally or for each point individually. An
increase in the values of o; is equivalent to consider a locally
coarser grid and, accordingly, this solution permits variable
spatial resolution. With a suitable selection of the averaging
neighborhood, the method can be applied to arbitrary source
spaces (e.g., the cortical surface). Considerable computational
effort can be saved if the matrix A can be expressed in terms
of a Kronecker product, e.g., assigning the same value of &
for all the averages associated to one point.

III. COMPUTER SIMULATIONS

A. General

The limits to the reconstruction, described in Section II-D,
are inherent to any underdetermined linear reconstruction
method, independently of the physical character of the par-
ticular inverse problem. In spite of these limitations, averaged
[14] or smooth reconstructions [16] of the original parameters
have proved to be useful in other fields of applications. In this
section, we analyze by means of computer simulations, how
the described theoretical limitations will affect the reconstruc-
tion of arbitrary current distributions in the case of electrical
measurements. For that purpose, the MN is compared here
with the averaged solution (AS) and the minimum Laplacian
solution (ML). The basis for the comparison and analysis
are the figures of merit described in Section II-C and their
resolution kernels. Note that, the following comparisons are
data independent since they are based on the concept of the
model resolution matrix.

The matrix A of the AS was constructed using a constant
value of ¢ = 0.02 and the coefficients w; were selected using
a radial weighting strategy described in Appendix IIL

The model resolution matrix associated with each solution
was constructed considering the case of electric measurements.
To simplify the calculations, a three layer spherical model with
radius and conductivities as described in [17] was used. A set
of 41 electrodes was distributed on the surface of the upper half
sphere as represented in Fig. 1. A regular cubic grid of 1152

(b

Fig. 1. Sensor configuration from two different viewpoints. () View from the right; (b) view from the top. The dots represent the 41 electrodes distributed
on the upper half of the most external unitary radius sphere. Coordinate system used in the following plots is indicated in this figure.

solution points with minimum intergrid distance d = 0.133
was confined to the upper half inner sphere volume.

B. Simulation Results

The number of solution points considered in this study,
impede a detailed exposition of all the resolution kernels
and the impulse responses associated with each solution.
Roughly, the observed behavior of the resolution kernels and
the impulse responses can be classified according to one of
the categories illustrated in Fig. 2: 1) Well-resolved resolution
kernels (impulse responses) with narrow high peaks correctly
centered at the target point and almost missing sidelobes.
2) Resolution kernels (impulse responses) strongly peaked at
points far from the target point and with very low amplitude at
the target point. 3) Resolution kernels (impulse responses) with
very small amplitudes everywhere, wildly oscillating around
the zero level. The main difference observed was that the
number of adequately centered impulse responses (although
with very low amplitude) was higher for the ML and the
AS than for the MN This suggests that a better estimation
of the position of single point sources can be obtained but
underestimating the source strength due to the low amplitude
of the impulse responses at the target point. Single point
sources at such points could be “detected” only when their
strength is remarkably higher than that of other simultaneously
active sources. In this case, a better performance of ML and
AS should be expected. The presence of noise in the data
or the existence of simultaneously active sources with similar
amplitude but with better impulse responses (first category)
will make impossible to discriminate such sources in the
reconstructed maps.

In terms of the resolution kernels, no significant difference
was observed among the solutions. For the majority of the
points of the solution grid the resolution kernels belong to
the third of the categories described before. This can be
noted in the plots of the source identifiability presented in
Fig. 3. Since no significant difference was found among the
z, y and z components of the sources we present only the
source identifiability for z. It is evident that the three plots are
remarkably similar and that the identifiability of the sources
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Fig. 2. Different categories of resolution kernels as described in the text. In the horizontal axis the points are organized according to their Euclidean

distance to the target point.

decreases with the depth of the points. The fact that this
reduction approximately occurs at the same depth for all three
solutions confirms once more that mainly eccentric sources,
i.e., cortical sources, can be identified. From the definition of
identifiability, the resolution kernels associated with sources
having a low identifiability are either incorrectly centered
(maximum far from the target point) or/and with very low
amplitude at the target point. In such cases, the estimates
yield insufficient information about the activity at the point
or its vicinity. Thus, not even a blurred reconstruction seems
to be possible for such locations, especially if other regions
are simultaneously active.

The a priori information used in AS or ML can slightly
improve the quality of the impulse responses, but not that
of the resolution kernels. This is due to the fact that the
columns of R (impulse responses) are linear combinations
of the columns of the inverse G. In contrast, the rows of
R (resolution kernels) are linear combinations of the rows of
the lead field matrix L. While the inverse can be conveniently
selected to determine the space to which the impulse responses
belong, the same is not true for the resolution kernels. Since
the resolution kernels are constrained to the space spanned by

the rows of L, they are (although dependent on the a priori
information) intrinsically determined by the physical laws
relating sources to measurements and the experimental design
(sensor and grid point locations). In contrast, the impulse
responses are determined by the a priori information added.
Hence, the quality of the impulse responses (or measures
derived from it, e.g., the dipole localization error) does not
depend on the sourcerlocation but on the a priori information
used to construct the inverse G. By means of constrained
inverses [15], it is always possible to obtain V., ideal impulse
responses (assuming that the reference for the potential is
known), i.e., to force the dipole localization error to be
zero for these N,, arbitrary sources independently of their
location. However, resolution kernels cannot be “manipulated”
at will. This suggests that while it is possible to improve the
capabilities of linear inverse solutions for the estimation of
the position of single point sources the same does not hold for
arbitrary current distributions.

The extent of the underdetermined character of the problem
for a given finite set of measurements can be evaluated using
the plots of the source visibility as in Fig. 4. It is evident that
the dependence of the visibility with source depth is similar
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Fig. 3. Plots of source identifiability for the z-component of a source at every solution point. The lower slice (2 = 0) corresponds to the horizontal plane
at the middie of the unitary sphere and the values of z are indicated at the top of each slice. (a) MN, (b) ML, and (c) AS.

to that observed in Fig. 3, suggesting that identifiability and
visibility are closely related concepts. In absence of a priori
information, the visibility and the identifiability are almost
identical. It is clear that the global a priori information used by
the linear solutions analyzed here is not sufficient to overcome
the lack of visibility of the deeper sources. As stated by
Lanczos: “A lack of information cannot be remedied by any
mathematical trickery.” The lack of visibility of the deepest
sources can be only compensated by including additional
information about them. Note also the existence of points with
low visibility near the cortical mantle.

IV. CONCLUSION

This paper exposed some of the basic limitations of linear
solutions in the reconstruction of arbitrary current distributions
inside the brain. The theoretical results discussed in Section II
prove that a limited number of data is insufficient to determine
exactly even those current distributions that fulfill a certain
main property that the specific linear solution is intended to
cope with. The cornerstone to analyze the influence of these
limitations in the estimated solutions is the model resolution

matrix. The results of this study clearly show that the estima-
tion of the positions of single point sources can be improved.
However, the same cannot be said about the performance of
these solutions in the presence of arbitrary current distributions
as evident from the analysis of the resolution kernels. The
behavior of the solutions presented here seems to be similar
for arbitrary source distributions. The identifiability of deep
sources remains a challenge for any linear solution. In the more
realistic case of noise contaminated data, the problem will be
even worse. Still, these solutions could provide practically
useful results if poorly identifiable points can be excluded
from the grid on the basis of some a priori information, e.g.,
that the generators are restricted to the cortical mantle or if
only a few dipolar generators are known to be present. A
combination of the resolution matrix with neuroanatomical
images could lead to maps that evaluate a priori, i.e., without
the necessity of performing experiments, the “reliability” of
the current reconstruction that will be provided by a particular
linear method. Further work in this direction is needed.

On the other hand, the current distributions that can be
reconstructed in the NIP are not only limited by the quantity
and quality of the data, but also by the physical properties
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Fig. 4. Plots of source visibility for the (a) z-component, (b) y-component, and (c) z-component of a source at every point of the solution space.

of the measurements. Maxwell equations state that electric
measurements contain no information about the solenoidal
part of the current densities [18]. Consequently, attempts
to estimate the whole vector from EEG data are in vain.
Approaches that considerably reduce the dimension of the
problem are either to estimate the scalar field I = divJ, or
the potential distribution in depth which are responsible for
the generation of the electric potentials measured on the scalp
surface.

APPENDIX I

Several of the approaches that can be used to yield a unique
solution to the problem stated in (1) converge to the following
variational problem for j [8]:

min(Lj —m)* We(Lj—m)+ A2 (5=j,) W (§—Jp). (Al-])

In (AI-1) W, and W,,, are symmetric positive (semi) definite
matrices representing the (pseudo) metrics associated with the
measurement space and the source space respectively. Vector
Jjp denotes any a priori value of the unknown current density

available, e.g., from other modalities of neurofunctional im-
ages. The regularization parameter is denoted by A. Assuming
linear independence of the rows of L, the solution to (Al-
1) is unique if the null spaces of W,,, and W_L intersect
trivially, i.e., Ker(W,) N Ker(W,L) = {0}. In this case, the
estimated solution vector j is given by

i =3p+ [L*W.L + AW, ] 'L*W,[m — Lj,]. (Al-2)
When the metric matrices W,,, and W, are positive definite
(AI-2) is equivalent to

§ = i WHILH LWL + AW m - Lj, | . (AI-3)
In the case of null a priori estimates of the current distribution
(j» = 0) and perfectly accurate data (A = 0), (AI-3) reduces to

j= WL LWL 'm. (Al-4)

Equation (Al-4) is a particular case of the class of solutions
of (1) that can be expressed by j = CL*[LCL*|"'m with C
not necessarily being invertible. Matrix C can be interpreted
in terms of a metric as in (Al-4) or alternatively as a change
of variables [19] or as an expansion in basis functions [20].
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When C is invertible the solutions are optimal in the sense
that they are the solutions of (1) with minimum J*C~1J. In
this class of C-generalized MN’s it is assumed that there exist
a bound e for a certain property of the solution that can be
expressed by means of matrix C, i.e., J*C™1J < ¢. Note
that the solution obtained for a given C does not necessarily
belong to the space spanned by the rows of L. Therefore,
it can contain silent or invisible sources. This remark makes
clear that the selection of the matrix C must be suggested by
sound a priori physical considerations [12].

Defining G = W_'LY[LW_'Lt]~! as the generalized
inverse that in some sense solves the inverse problem and
using (1), (Al-4) can be rewritten as .

j=Gm (AL-5).

A wide class of linear solutions can be constructed following
this methodology. In general, different selections of W, and
W, will produce different solutions (See [15] about pairs of
norms leading to the same inverse G). Illustrative examples
of solutions that have been considered in the (NIP) and can
be cast in this framework are as follows.

1) MN [3], [21], [22]: W, = W,, = I, I stands for the
identity matrix (T).

2) Weighted MN’s [4]: W, = I and a diagonal matrix
W, is introduced to lessen the tendency to superficial
reconstructions characteristic of the MN. One example
corresponds to choose the ith diagonal element of W,
as the norm of the :th column of the lead field matrix
L [23].

3) Probabilistic reconstruction of multiple sources (PROM)
solution [24]: A method based on the multiple signal
classification (MUSIC) algorithm [25] is used to recon-
struct the metric matrix W,,.

4). Bayesian approach [26]: W,,, and W, are the covari-
ance matrices for the sources and the noise, respectively.

5) Laplacian minimization with column scaling [5]: W, =
I and W,, = D*B*BD, where D is a diagonal matrix
and B is a version of the discrete Laplacian operator.

APPENDIX II
SOME CRITICAL POINTS OF LINEAR
RECONSTRUCTION PROCEDURES

Lemma: Let the solution of (1) given by a generalized
inverse G such that LG =Y and G # L™ [e.g., as in (AI-5)],
then the following statements are true.

1) There are sources j* that produce a nonnull measure-
ment vector m* and cannot be retrieved by algorithm
G.

2) There are sources j* that produce a nonnull measure-
ment vector m* and fulfill a certain C-ness property
(j**Cj* < ¢) that cannot be retrieved by the algorithm
G intended to cope with the C-ness property.

Proof: Consider * = (I — GG™)h with h being a
nonnull arbitrary vector. By construction, j* belongs to the
space orthogonal to the columns of G. Thus, there exists no
measurement vector m such that j* = Gm. On the other
hand, m* = Lj* = (L — G*)h will be equal to zero (for

any vector h) only when G = L*(MN), a condition that
does not hold by hypothesis. Then, this source j*produces a
data vector m* and cannot be retrieved by G, as stated in 1).
To proof 2) consider the source aj* with « selected from the
condition o?j**Cj* < ¢. In general, all the sources that satisfy
either 1) or 2) are linear combinations (with properly chosen
coefficients) of the columns of matrix (I — GG™) that do
not belong to Ker(L). The existence of such columns follows
from the condition G # L*.

APPENDIX III
RADIAL WEIGHTING STRATEGY

The radial weighting strategy mentioned in Section II-E is
based on selecting weights which force the primary current
distribution to be zero beyond a certain sphere which defines
the brain limits, a physical property that has to be fulfilled
by any spatially bounded current distribution. This property,
fulfilled by the MN in a physically unsatisfactory way, is here
guaranteed by using the simple weighting function W;; =
(1)/(JR — ;]™) where R is the radius of the sphere beyond
which the primary currents have to be zero and r; stand for
the 7th solution point. The integer n controls the “velocity of
decay” of the currents.
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